matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraDim eines Skalarprodukts
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Dim eines Skalarprodukts
Dim eines Skalarprodukts < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dim eines Skalarprodukts: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Di 20.11.2007
Autor: trivialesmathe

Aufgabe
Es sei V ein $ [mm] \IR-Vektorraum [/mm] $ mit Skalarprodukt der Dimension dim V = n. Weiter seien [mm] \phi_1,...\phi_n \in [/mm] V* gegeben.
Zeigen Sie: Genau dann ist [mm] (\phi_1, \phi_n) [/mm] in V* linear abhängig, wenn es ein v [mm] \in [/mm]  V\ {0} gibt, so dass [mm] \phi [/mm] (v) = 0 für i=1, ..., n gilt.

Hallo! Kann mir jemand zu dieser Aufgabe nen Denkanstoß  geben? ich steh grad glaub ich auf dem Schlauch!
Wäre super nett! Gruß

        
Bezug
Dim eines Skalarprodukts: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Di 20.11.2007
Autor: angela.h.b.


> Es sei V ein [mm]\IR-Vektorraum[/mm] mit Skalarprodukt der Dimension
> dim V = n. Weiter seien [mm]\phi_1,...\phi_n \in[/mm] V* gegeben.
>  Zeigen Sie: Genau dann ist [mm](\phi_1, \phi_n)[/mm] in V* linear
> abhängig, wenn es ein v [mm]\in[/mm]  V\ {0} gibt, so dass [mm]\phi[/mm] (v)
> = 0 für i=1, ..., n gilt.
>  Hallo! Kann mir jemand zu dieser Aufgabe nen Denkanstoß  
> geben? ich steh grad glaub ich auf dem Schlauch!
>  Wäre super nett! Gruß

Hallo,

einen Fehler, den wir heute schonmal hatten, entnehme ich Deiner Überschrift:

ein Skalarprodukt hat keine Dimension. (Was sollte das auch sein???)


Sondern: Du hast in Deiner Aufgabe einen Vektorraum der Dimension n, und auf diesem ist ein Skalarprodukt definiert.

> Weiter seien [mm]\phi_1,...\phi_n \in[/mm] V* gegeben.

Hier mußt Du wissen, was [mm] V^{\*} [/mm] ist: es ist der Vektorraum der Linearformen von V, also sämtlicher Homomorphismen v. V nach [mm] \IR. [/mm]
Somit sind die [mm] \Phi_i [/mm] solche Homomorphismen.

Ich hoffe, daß Dir mit diesen Informationen ein Beginn möglich ist.

Gruß v, Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]