matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenDiffusions-Reaktionsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Diffusions-Reaktionsgleichung
Diffusions-Reaktionsgleichung < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffusions-Reaktionsgleichung: Tipp fürs Lösen
Status: (Frage) überfällig Status 
Datum: 18:05 Fr 18.03.2011
Autor: ActionAndi


Hallo zusammen,

ich möchte gerne diese Gleichung (Butler-Volmer Gleichung) numerisch lösen:
[mm]\bruch{\partial^2 \phi}{\partial x^2}=k_1(x) (e^{k_2(k_3-\phi)} -e^{-k_4(k_5-\phi)})[/mm]
Die Randbedinungen lauten:
x=L: [mm]\bruch{\partial \phi}{\partial x}=0[/mm]
x=0: [mm]\phi = \phi_0[/mm]

Durch eine Diskretisierung (z.B. finite Differenzen) kann ich ja dieses pDGL in ein System nichtlineare algebraischer Gleichungen umwandeln und dann lösen.
Durch den recht "fiesen" nichtlinearen Reaktionsterm auf der rechten Seite kann ich nicht so einfach iterieren, da schnell dieser Term entwder -inf oder +inf ist.
Habt Ihr einen Tipp oder vielleicht einen Löser (z.B. in C oder Matlab), den ich dafür verwenden könnte?

Andreas



        
Bezug
Diffusions-Reaktionsgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:07 Fr 18.03.2011
Autor: ActionAndi


Nun ist mir noch folgendes eingefallen. Der Ansatz mit Subsitution (keine Ahnung wie der richtige Begriff heißt):
[mm]\xi = \phi'[/mm]

daraus folgt:
[mm]\bruch{\partial \phi}{ \partial x} = \xi[/mm]

[mm] \bruch{\partial \xi}{\partial x}=k_1(x) (e^{k_2(k_3-\phi)} -e^{-k_4(k_5-\phi)}) [/mm]

Nur, wie mach ich da die Randbedingung am rechten Rand x=L rein?

Andreas


Bezug
                
Bezug
Diffusions-Reaktionsgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 So 20.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Diffusions-Reaktionsgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 21.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]