matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematicaDiffgleichung unter NB
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathematica" - Diffgleichung unter NB
Diffgleichung unter NB < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffgleichung unter NB: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:18 Di 13.09.2011
Autor: wand

Aufgabe
Verwende mathematica, um zu beweisen, dass die funktion f(x,y,z)=1/q(z) [mm] \exp(i*k*(x^2+y^2)/(2q(z))) [/mm] die diffgleichung [mm] \partial_(xx)f [/mm] + [mm] \partial_(yy)f+2ik\partial_zf=0 [/mm] erfüllt. bestimme die funktion q(z) unter der bedingung, dass f(x,y,0)=C [mm] \exp(-(x^2+y^2)/a^2) [/mm] wird.




Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: www.matheplanet.de
der post ist in der rubrik mathe - mathematica gepostet. der dazugehörige link funktionierte leider nicht.

hier habe ich auch meinen gescheiterten versuch gepostet.
vielen dank für eure hilfe.
lg


        
Bezug
Diffgleichung unter NB: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:35 Di 13.09.2011
Autor: schachuzipus

Hallo wand,


> Verwende mathematica, um zu beweisen, dass die funktion
> f(x,y,z)=1/q(z) [mm]\exp(i*k*(x^2+y^2)/(2q(z)))[/mm] die
> diffgleichung [mm]\partial_(xx)f[/mm] +
> [mm]\partial_(yy)f+2ik\partial_zf=0[/mm] erfüllt. bestimme die
> funktion q(z) unter der bedingung, dass f(x,y,0)=C
> [mm]\exp(-(x^2+y^2)/a^2)[/mm] wird.
>  
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt: www.matheplanet.de
>  der post ist in der rubrik mathe - mathematica gepostet.
> der dazugehörige link funktionierte leider nicht.

Dann poste doch wenigstens deine Versuche auch hier ...

Hier der link:

[]http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=159094


> hier habe ich auch meinen gescheiterten versuch gepostet.
>  vielen dank für eure hilfe.
>  lg
>  

Gruß

schachuzipus


Bezug
        
Bezug
Diffgleichung unter NB: ergänzt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:30 Di 13.09.2011
Autor: Al-Chwarizmi


> Verwende mathematica, um zu beweisen, dass die funktion

>         [mm]f(x,y,z)\ =\ 1/q(z)*\exp(i*k*(x^2+y^2)/(2q(z)))[/mm]

> die diffgleichung

>       [mm]\partial_{(xx)}f\ +\ \partial_{(yy)}f+2ik\partial_zf\ =\ 0[/mm]

> erfüllt. bestimme die
> funktion q(z) unter der bedingung, dass
> [mm]f(x,y,0)\ =\ C *\exp(-(x^2+y^2)/a^2)[/mm] wird.


Hallo wand,

es scheint, dass die angegebene Funktion die DGL nicht
oder jedenfalls nicht allgemein erfüllt.

Sind f(x,y,z) und die DGL wirklich korrekt und vollständig
angegeben ? Ist allenfalls noch etwas über q(z) bekannt ?

LG   Al-Chw.



Nachtrag:

Richtigerweise sollte die Aufgabe so lauten:

Verwende Mathematica, um zu beweisen, dass die Funktion

         [mm]f(x,y,z)\ =\ 1/q(z)*\exp(i*k*(x^2+y^2)/(2q(z)))[/mm]

für gewisse geeignet gewählte Funktionen q(z) die Differential-
gleichung

       [mm]\partial_{xx}f\ +\ \partial_{yy}f+2\,i\,k\,\partial_zf\ =\ 0[/mm]

erfüllt.

Bezug
        
Bezug
Diffgleichung unter NB: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Di 13.09.2011
Autor: MathePower

Hallo wand,

> Verwende mathematica, um zu beweisen, dass die funktion
> f(x,y,z)=1/q(z) [mm]\exp(i*k*(x^2+y^2)/(2q(z)))[/mm] die
> diffgleichung [mm]\partial_(xx)f[/mm] +
> [mm]\partial_(yy)f+2ik\partial_zf=0[/mm] erfüllt. bestimme die
> funktion q(z) unter der bedingung, dass f(x,y,0)=C
> [mm]\exp(-(x^2+y^2)/a^2)[/mm] wird.
>  
>
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt: www.matheplanet.de
>  der post ist in der rubrik mathe - mathematica gepostet.
> der dazugehörige link funktionierte leider nicht.


Hier der Link:

[]Lösung einer DGL unter Nebenbedingungen


>  
> hier habe ich auch meinen gescheiterten versuch gepostet.


Schreibe die gegebene DGL nach dem Einsetzen von f(x,y,z)
als Produkt von Faktoren.


>  vielen dank für eure hilfe.
>  lg
>  


Gruss
MathePower

Bezug
        
Bezug
Diffgleichung unter NB: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mi 14.09.2011
Autor: Al-Chwarizmi

Hallo wand,

wenn du dem Tipp von MathePower folgst (faktorisieren),
kannst du nachher erkennen, welche (einfache ...) Form
q(z) haben muss, um die DGL erfüllen zu können !

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]