matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferezialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Differezialrechnung
Differezialrechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differezialrechnung: Ableitung
Status: (Frage) beantwortet Status 
Datum: 15:57 Fr 05.05.2006
Autor: Stan

Aufgabe
f(x)=-1/4 cos*(ln(4x+5)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,

habe aus dem ersten Faktor (-1/4 cos) u=-1/4 cos  und  u'= 1/4 sin

und aus dem zweiten Faktor (ln(4x+5)  u=(ln(4x+5)  und u'= 4/4x+5 gebildet.  

Danach einfach mit der Produkregel u'*v+u*v' zusammengesetzt. Als Ergebnis   habe ich 1/4 sin*(ln(4x+5)+(-1/4 cos)*4/4x+5 raus!

Meine Frage ist ob man die beiden Faktoren einfach erstmal einzeln für sich Ableiten kann um auf u und u' bzw. v und v' zu kommen um dann anschließend mit der Produktregel weiter rechnen zu können?

Ist mein Ergebnis richtig???

Gruss Kev

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differezialrechnung: Lösung
Status: (Antwort) fertig Status 
Datum: 18:18 Fr 05.05.2006
Autor: Denny22

Also die Lösung ist vorweg:

[mm] $\bruch{sin(ln(4x+5))}{4x+5}$ [/mm]

Du nimmst zunächst deine Funktion und teilst sie auf in

[mm] $g(x)=-\bruch{1}{4}cos(x)$ [/mm]

und

$h(x)=ln(4x+5)$

also hast du f(x)=g(h(x)). Nun Kettenregel anwenden. Man erhält:

[mm] $\bruch{1}{4}*sin(ln(4x+5))*[ln(4x+5)]'$ [/mm]

um nun ln(4x+5) abzuleiten, musst du wieder die Kettenregel anwenden.
Dazu ist

$u(x)= ln(x)$

und

$v(x)=4x+5$

damit hast du $ln(4x+5)=u(v(x))$. Unter erneuter Verwendung der Kettenregel erhält man (4 und 1/4 kürzen sich weg):

[mm] $\bruch{sin(ln(4x+5))}{4x+5}$ [/mm]

Denke daran: Die Kettenregel lautet:

$g(f(x))=g'(f(x))*f'(x)$

Ciaoi.


Bezug
                
Bezug
Differezialrechnung: Wann welche Regel
Status: (Frage) beantwortet Status 
Datum: 18:51 Fr 05.05.2006
Autor: Stan

Erst mal danke!!

Woran erkennt man denn wann man zB. die Kettenregel oder wann die Produktregel anwenden muß? Oder hätte man auch die Produktregel anwenden können?

Gruss Kev

Bezug
                        
Bezug
Differezialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Fr 05.05.2006
Autor: Janyary

hi stan,

du musst dir deine ausgangsfunktion zuerst einmal ganz genau anschaun um festzustellen aus welchen teilfunktionen sie zusammengesetzt ist.
dabei musst du natuerlich aufpassen, dass du diese teilfunktionen nicht "zerreisst", wie du es bei deinem bsp mit dem cosinus gemacht hast.
die regeln sagen dir ja an sich schon auf welche art von ausgangsfunktion du sie anwenden sollst.
hm, vielleicht nen kurzes bsp.
sei g(x)=cos(x), h(x)=ln(4x+5)

f(x)=cos(x)ln(4x+5) [mm] \to [/mm] f(x)=g(x)h(x) [mm] \to [/mm] Produktregel

[mm] f(x)=\bruch{cos(x)}{ln(4x+5)} \to f(x)=\bruch{g(x)}{h(x)} \to [/mm] Quotientenregel

f(x)=cos(ln(4x+5)) [mm] \to [/mm] f(x)=g(h(x)) [mm] \to [/mm] Kettenregel

hoffe das hilft dir erstmal weiter :)

LG Jany


Bezug
        
Bezug
Differezialrechnung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Fr 05.05.2006
Autor: Stan

Danke, habt mir alle weiter geholfen, vielen Dank!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]