matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzieren von Funftionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Differenzieren von Funftionen
Differenzieren von Funftionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren von Funftionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 12.03.2008
Autor: chege22

Hallo erstmal. Muss verschiedene Funktionen ableiten. Bei manchen weiss ich nicht weiter, bei machen bin ich mir nicht sicher ob sie richtig sind. Wäre über Hilfe dankbar...

(i) g(x)=cos(4x)              
    g´x=-4sin(4x)

(ii) [mm] k(x)=x^7 [/mm] cos(4x) ; jetzt habe ich die Produktregel benutzt und

     k´(x)= [mm] 7x^6 [/mm] * cos(4x) + [mm] x^7 [/mm] *(-4sin(4x)erhalten. Müsste eigentlich       richtig sein, aber wie gehts jetzt weiter?

(iii) k(t)= e^3t / [mm] 4-t^2 [/mm]
      k´(t)= 3e^3t [mm] *(4-t^2)- [/mm] e^3t *(-2t) / ( [mm] 4-t^2)^2 [/mm] , und jetzt??

(iv) f(x)= sin (6x)
      f´(x)= 6 cos (6x)

(v) k(x)= ln ( 3 sin (6x))       (0<x<1/6pie)   Hier komme ich gar nicht weiter...

        
Bezug
Differenzieren von Funftionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 12.03.2008
Autor: Event_Horizon

Hallo!

> Hallo erstmal. Muss verschiedene Funktionen ableiten. Bei
> manchen weiss ich nicht weiter, bei machen bin ich mir
> nicht sicher ob sie richtig sind. Wäre über Hilfe
> dankbar...
>  
> (i) g(x)=cos(4x)              
> g´x=-4sin(4x)

Korrekt!

>  
> (ii) [mm]k(x)=x^7[/mm] cos(4x) ; jetzt habe ich die Produktregel
> benutzt und
>  
> k´(x)= [mm]7x^6[/mm] * cos(4x) + [mm]x^7[/mm] *(-4sin(4x)erhalten. Müsste
> eigentlich       richtig sein, aber wie gehts jetzt
> weiter?

Das ist auch korrekt. Allerdings sehe ich nicht, daß man da großartig was vereinfachen könnte. Du könntest [mm] x^6 [/mm] ausklammern, mehr aber nicht.

>  
> (iii) k(t)= e^3t / [mm]4-t^2[/mm]
>        k´(t)= 3e^3t [mm]*(4-t^2)-[/mm] e^3t *(-2t) / ( [mm]4-t^2)^2[/mm] ,
> und jetzt??

Erstmal etwas leserlicher:

[mm] $k(t)=\frac{e^{3t} }{4-t^2}$ [/mm]

[mm] $k'(t)=\frac{3e^{3t} *(4-t^2)- e^{3t} *(-2t) }{(4-t^2)^2}$ [/mm]

Hier könntest du zunächst den e-Term ausklammern. Wenn du den Zähler dann noch ein wenig ordnest, könntest du versuchen, ihn in Linearfaktoren zu zerlegen, und zu schaun, ob sich dann was mit dem Nenner kürzt. Mir scheint das hier aber nicht der Fall zu sein.

Allerdings, wenn du noch höhere Ableitungen berechnen mußt, ist die Version mit dem ausgeklammerten e schon das beste, eine Faktorisierung des Zählers macht das weitere Ableiten nur noch komplizierter.

>  
> (iv) f(x)= sin (6x)
>        f´(x)= 6 cos (6x)

Korrekt!

>  
> (v) k(x)= ln ( 3 sin (6x))       (0<x<1/6pie)   Hier komme
> ich gar nicht weiter...

Nun, hier mußt du die Kettenregel anwenden. Innere mal äußere:

$k(x)= [mm] \ln [/mm] ( 3 [mm] \sin [/mm] (6x))$
$k'(x)= [3 [mm] \sin (6x)]'*\ln'( [/mm] 3 [mm] \sin [/mm] (6x))$

Du mußt den Term in den eckigen Klammern noch ableiten. Und du mußt rausfinden, wie die Ableitung vom ln ist, und da dann das, was ursprünglich in den Klammern des ln stand, einsetzen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]