matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Differenzieren
Differenzieren < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzieren: 1.Ableitung
Status: (Frage) beantwortet Status 
Datum: 10:21 Di 14.08.2007
Autor: Lars_B.

Aufgabe
Differenzieren Sie einmal:
1. [mm]y = \bruch{e^{2x}}{\ln\wurzel{x}}[/mm]
2. [mm]y = \bruch{1}{sin\wurzel{x}}[/mm]
3. [mm]y = ln(\bruch{x^2*e^x}{e^{x^2}})[/mm]

Guten Morgen,

leider habe ich bei diesen Aufgaben Probleme auf das richtige Ergebnis zu kommen.

1. [mm]y = \bruch{e^{2x}}{ln\wurzel{x}}[/mm]
[mm] u=e^{2x}; u'= 2 e^{2x} [/mm]
[mm] v = ln\wurzel{x}; v' = \bruch{1}{\wurzel{x}} * \bruch{1}{2\wurzel{x}} = \bruch{1}{2x} [/mm]

[mm] y'=\bruch{ln\wurzel{x}*2e^{2x} - e^{2x} * \bruch{1}{2x} }{(ln\wurzel{x})^2}[/mm]

rauskommen soll:
[mm] y' = 2e^{2x} * \bruch{lnx - \bruch{2}{x}}{ln^2x} [/mm]

2. [mm]y = \bruch{1}{sin\wurzel{x}}[/mm]

[mm] z = sin \wurzel{x}; z' = \bruch{cos\wurzel{x}}{2\wurzel{x}} [/mm]
[mm] y = z^{-1}; y' = -1 * z^{-2} * z'[/mm]

[mm]= -1 * \bruch{\cos\wurzel{x}}{2\wurzel{x}*(\sin \wurzel{x})^2} [/mm]

die -1 ist hier laut Lösung falsch, wieso ?

3. [mm]y = \ln(\bruch{x^2*e^x}{e^{x^2}})[/mm]

[mm]y = \ln(x^2*e^x) - \ln(e^{x2})[/mm]

[mm] y'= \bruch{1}{x^2*e^x} * 2x + e^x + x^2 * e^x - \bruch{1}{e^{x^2}} * e^{x^2} * 2x = \bruch{2}{x} + x^2 * e^x - 2x[/mm]

rauskommen soll aber:
[mm] y' = \bruch{2}{x} + 1 - 2x[/mm]


Danke
Grüße
Lars


        
Bezug
Differenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 Di 14.08.2007
Autor: angela.h.b.


> Differenzieren Sie einmal:
>  1. [mm]y = \bruch{e^{2x}}{\ln\wurzel{x}}[/mm]
>  2. [mm]y = \bruch{1}{sin\wurzel{x}}[/mm]
>  
> 3. [mm]y = ln(\bruch{x^2*e^x}{e^{x^2}})[/mm]
>  Guten Morgen,
>  
> leider habe ich bei diesen Aufgaben Probleme auf das
> richtige Ergebnis zu kommen.
>  
> 1. [mm]y = \bruch{e^{2x}}{ln\wurzel{x}}[/mm]
>  [mm]u=e^{2x}; u'= 2 e^{2x}[/mm]
>  
> [mm]v = ln\wurzel{x}; v' = \bruch{1}{\wurzel{x}} * \bruch{1}{2\wurzel{x}} = \bruch{1}{2x}[/mm]
>  
> [mm]y'=\bruch{ln\wurzel{x}*2e^{2x} - e^{2x} * \bruch{1}{2x} }{(ln\wurzel{x})^2}[/mm]

Hallo,

das stimmt mit meinem Ergebnis überein.
Du kannst das nun noch vereinfachen, wenn Du bedenkst, daß [mm] ln\wurzel{x}= \bruch{1}{2}lnx. [/mm]

Noch viel einfacher wird die Sache, wenn man gleich zu Anfang y =  [mm] \bruch{e^{2x}}{ln(\wurzel{x})}= \bruch{2e^{2x}}{lnx} [/mm] schreibt und dann ableitet.

Dann erhält man ein Ergebnis, welches dem unten angegebenen ähnlich ist. Das unten angegebene Ergebnis ist nicht ganz richtig.

>  
> rauskommen soll:
>  [mm]y' = 2e^{2x} * \bruch{lnx - \bruch{2}{x}}{ln^2x}[/mm]


>  
> 2. [mm]y = \bruch{1}{sin\wurzel{x}}[/mm]
>  
> [mm]z = sin \wurzel{x}; z' = \bruch{cos\wurzel{x}}{2\wurzel{x}}[/mm]
>  
> [mm]y = z^{-1}; y' = -1 * z^{-2} * z'[/mm]
>  
> [mm]= -1 * \bruch{\cos\wurzel{x}}{2\wurzel{x}*(\sin \wurzel{x})^2}[/mm]
>  
> die -1 ist hier laut Lösung falsch, wieso ?

Wegen gar nichts. Das Minuszeichen gehört dahin.


>  
> 3. [mm]y = \ln(\bruch{x^2*e^x}{e^{x^2}})[/mm]
>  
> [mm]y = \ln(x^2*e^x) - \ln(e^{x2})[/mm]
>  
> [mm]y'= \bruch{1}{x^2*e^x} * 2x + e^x + x^2 * e^x - \bruch{1}{e^{x^2}} * e^{x^2} * 2x = \bruch{2}{x} + x^2 * e^x - 2x[/mm]

Hier hast Du Gewurschtel mit Deinen Rechenzeichen gemacht.

Richtig wäre

y'= [mm] \bruch{1}{x^2*e^x} [/mm] * (2x [mm] *e^x [/mm] + [mm] x^2 [/mm] * [mm] e^x) [/mm] - [mm] \bruch{1}{e^{x^2}} [/mm] * [mm] e^{x^2} [/mm] * 2x,

und wenn Du das ausrechnest, bekommst Du die angegebene Lösung.

Allerdings kann man sich die Sache hier so sehr vereinfachen, daß man beim Ableiten fast nichts mehr können muß:

y = [mm] \ln(\bruch{x^2*e^x}{e^{x^2}}) [/mm] = [mm] \ln(x^2*e^x) [/mm] - [mm] \ln(e^{x2})=ln(x^2)+ln(e^x)-ln(e^{x2})=2lnx [/mm] + x + [mm] x^2. [/mm]


Gruß v. Angela

>  
> rauskommen soll aber:
>  [mm]y' = \bruch{2}{x} + 1 - 2x[/mm]
>  
>
> Danke
>  Grüße
>  Lars
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]