matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzierbarkeit von Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Differenzierbarkeit von Lösung
Differenzierbarkeit von Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit von Lösung: Idee
Status: (Frage) beantwortet Status 
Datum: 01:45 Mi 20.08.2014
Autor: natural

Hallo,

befinde mich zur Zeit in der Prüfungsvorbereitungen zu gewöhnlichen DGL.

In meinem Skript ist ein Absatz den ich ganz und gar nicht verstehe. Und leider gibt es genau zu diesem Absatz eine Prüfungsfrage die dran kommen könnte.

Wäre sehr nett, wenn ihr mir ein paar Tips dazu geben könntet. Den Absatz habe ich rot umrandet.

http://img5.fotos-hochladen.net/uploads/unbenannttxp30qv5a8.png

mfg
natural

        
Bezug
Differenzierbarkeit von Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:13 Mi 20.08.2014
Autor: abakus

Hallo,

so wie ich das verstehe:
wenn u mindestens (n-1)-mal differenzierbar ist, existieren die Ableitungen [mm] $u^{(n-1)}$, $u^{(m-2)}$, [/mm] ...
Damit existiert auch der komplette rechte Term deine oberen Gleichung. Dieser liefert jedoch gerade eine Komposition für den Term auf der linken Seite (welcher also als Komposition existierenden Ableitungen ebenfalls existiert).
Somit existiert auch [mm] $u^{(n)}$, [/mm] und das lässt sich fortsetzen.
Gruß Abakus 

Bezug
        
Bezug
Differenzierbarkeit von Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 20.08.2014
Autor: fred97

Ich kann mir es nicht verkneifen: wenn der Verfasser des Skripts schreibt

"Lösungenen der homogenen Gleichung sind beliebig oft differenzierbar, wenn sie mindestens (n-1)- mal differenzierbar sind. .....",

so hat er offenbar den Begriff "Lösung" einer DGL nicht verstanden !

Ist I [mm] \subseteq \IR [/mm] ein Intervall und ist $u: I [mm] \to \IR \quad (\IC)$ [/mm] eine Lösung einer DGL n-ter Ordnung, so ist definitionsgemäß(!) die Funktion u mindestens n-mal differenzierbar auf I !

Ist die DGL linear und homogen und hat sie konstante Koeffizienten, so sieht man induktiv aus der expliziten Darstellung


[mm] u^{(n)}= [/mm] ....

der DGL, dass u beliebig oft differenzierbar ist.

Ist die DGL inhomogen, so muß das i.a. nicht der Fall sein.

Beispiel:

(*)  [mm] u^{(3)}(x)=|x|. [/mm]

Jede Lösung von (*) ist genau 3-mal (und nicht öfter) differenzierbar (auf [mm] \IR). [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]