matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferenzierbarkeit  in (0,0)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Differenzierbarkeit in (0,0)
Differenzierbarkeit in (0,0) < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit in (0,0): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Do 06.05.2010
Autor: Limaros

Aufgabe
Sei f: [mm] \IR^2 \to \IR [/mm] gegeben duch [mm] f(x,y)=\frac{xy}{\wurzel{x^2+y^2}} [/mm] für [mm] (x,y)\not=(0,0) [/mm] und f(x,y)=0 für (x,y)=(0,0). Ist f in (0,0) total differenzierbar (und falls ja, wie ist die Ableitung)?

Also, f ist doch in (0,0) total differenzierbar, falls es eine Umgebung von (0,0) gibt, in der die partiellen Ableitungen nach x und y stetig sind. Richtig?

Ich kriege die folgenden partiellen Ableitungen:

[mm] D_x f(x,y)=\frac{y\wurzel{x^2+y^2}-\frac{x^2y}{\wurzel{x^2+y^2}}}{x^2+y^2} [/mm]

[mm] D_y f(x,y)=\frac{x\wurzel{x^2+y^2}-\frac{y^2x}{\wurzel{x^2+y^2}}}{x^2+y^2} [/mm]

Soweit richtig?

Beide Ableitungen sind für (x,y)=(0,0) nicht definiert, also schon gar nicht stetig, also ist auch f in (0,0) nicht diffbar. Stimmt das?

Und noch eine Frage: Die Funktion f wurde ja einfach nach (0,0) stetig fortgesetzt, würde es für die Differenzierbarkeit von f einen Unterschied machen, ob die partiellen Ableitungen nach (0,0) stetig fortsetzbar wären?

        
Bezug
Differenzierbarkeit in (0,0): Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Do 06.05.2010
Autor: fred97

Du gehst nicht richtig heran an diese Aufgabe !

Wir berechnen mal die partiellen Ableitungen in (0,0):

[mm] \bruch{f(x,0)-f(0,0)}{x-0} [/mm] = 0 für jedes x [mm] \ne [/mm] 0. Folglich existiert [mm] f_x(0,0) [/mm] und = 0.

Analog: [mm] f_y(0,0) [/mm] =0.

Nun setze A:=(0,0) und untersuche

    $h(x,y):= [mm] \bruch{f(x,y)-f(0,0)-A*(x,y)^T}{||(x,y)||}$ [/mm]

Geht h(x,y) [mm] \to [/mm] 0 für (x,y) [mm] \to [/mm] (0,0), so ist f in (0,0) diffbar, anderenfalls nicht.

Tipp: betrachte h(t,t) für t > 0.

FRED

Bezug
                
Bezug
Differenzierbarkeit in (0,0): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Fr 07.05.2010
Autor: Limaros

Dann erhalte ich h(t,t)=1/2 für alle t>0, also inbesondere [mm] \lim_{t \to 0} [/mm] h(t,t)=1/2 und folglich ist f in (0,0) nicht differenzierbar. Richtig?

Und noch eine Frage zu derselben Funktion, um zu sehen, ob ich langsam ein bißchen durchsteige: Angenommen, ich würde nach der Richtungsdiffbarkeit von f fragen. Dann gebe ich mir ein [mm] (v_1,v_2) [/mm] mit [mm] \parallel (v_1,v_2) \parallel=1 [/mm] vor und mache folgenden Ansatz:

h(t)= [mm] \frac{f(tv_1, tv_2)-f(0,0)}{t} [/mm]

mit t>0 und untersuche dann [mm] \lim_{t \to 0} [/mm] h(t).

Dann bekomme ich [mm] \lim_{t \to 0} h(t)=v_1v_2 [/mm]

Das hieße dann, daß f in jede Richtung in (0,0) richtungsdiffbar ist,  aber eben nicht total diffbar.

Danke für Korrektur!

Bezug
                        
Bezug
Differenzierbarkeit in (0,0): Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 07.05.2010
Autor: fred97

Alles richtig erkannt

FRED

Bezug
                                
Bezug
Differenzierbarkeit in (0,0): Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Sa 08.05.2010
Autor: Limaros

So an der Aufgabe habe ich doch das ein oder andere noch kapiert. Das Forum hier ist wirklich eine tolle Unterstützung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]