matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Differenzierbarkeit
Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:20 Di 28.06.2005
Autor: Lilith

Hallo nochmal!
Ich habe hier mit einer Aufgabe so meine Schwierigkeiten und wäre über ein paar Tipps sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Einmal ist eine Funktion f : [mm] \IR \to\IR [/mm] definiert durch f (x) = [mm] x^{4} [/mm] - 2x.
Die Frage ist dann an welcher Stelle [mm] x_{0} [/mm] die Funktion f eine Tangente mit Steigung m = 2 hat.

In der Vorlesung habe ich gefunden, das die Tangentensteigung die erste Ableitung der FUnktion ist, also Tangentensteigung = [mm] f´(x_{0}), [/mm] kann ich dann da einfach die erste Ableitung bilden und diese dann gleich 2 setzen?

Im zweiten Teil der Aufgabe ist dann eine Funktion f : (0, [mm] \infty) \to \IR [/mm] mit f (x) := [mm] \begin{cases} 2/x, & \mbox{für } 0 < x \le 2 \\ ax - 2a + 1, & \mbox{für } x > 2 \end{cases} [/mm]
gegeben. Die Frage ist dann wie a [mm] \in \IR [/mm] gewählt werden muss damit die Funktion bei x = 2 differenzierbar wird.

Wie muss ich hier vorgehen? Einfach mal für x 2 einsetzen? Wäre sehr dankbar für ein paar Anhaltspunkte.

Schon mal danke im vorraus.

Liebe Grüße,
Lilith

        
Bezug
Differenzierbarkeit: Hinweise
Status: (Antwort) fertig Status 
Datum: 16:29 Di 28.06.2005
Autor: Roadrunner


> Hallo nochmal!

Auch von mir: Hallo nochmal ... ;-)


> Einmal ist eine Funktion f : [mm]\IR \to\IR[/mm] definiert durch f
> (x) = [mm]x^{4}[/mm] - 2x.
> Die Frage ist dann an welcher Stelle [mm]x_{0}[/mm] die Funktion f
> eine Tangente mit Steigung m = 2 hat.
>  
> In der Vorlesung habe ich gefunden, das die
> Tangentensteigung die erste Ableitung der FUnktion ist,
> also Tangentensteigung = [mm]f´(x_{0}),[/mm] kann ich dann da
> einfach die erste Ableitung bilden und diese dann gleich 2
> setzen?

[ok] Genau so geht's ...





> Im zweiten Teil der Aufgabe ist dann eine Funktion f : (0,
> [mm]\infty) \to \IR[/mm] mit f (x) := [mm]\begin{cases} 2/x, & \mbox{für } 0 < x \le 2 \\ ax - 2a + 1, & \mbox{für } x > 2 \end{cases}[/mm]
> gegeben. Die Frage ist dann wie a [mm]\in \IR[/mm] gewählt werden
> muss damit die Funktion bei x = 2 differenzierbar wird.
>  
> Wie muss ich hier vorgehen? Einfach mal für x 2 einsetzen?
> Wäre sehr dankbar für ein paar Anhaltspunkte.

Zunächst einmal muß für die Differenzierbarkeit die Funktion auch in [mm] $x_0 [/mm] \ = \ 2$ stetig sein (Voraussetzung für Differenzierbarkeit).

Es muß also gelten:  [mm] $\limes_{x\rightarrow2-}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow2+}f(x) [/mm] \ = \ f(2)$


Damit die Funktion auch differenzierbar ist, müssen die entsprechenden Grenzwerte der 1. Ableitung auch übereinstimmen:

[mm] $\limes_{x\rightarrow2-}f'(x) [/mm] \ = \ [mm] \limes_{x\rightarrow2+}f'(x)$ [/mm]


Kommst Du nun etwas weiter?


Gruß vom
Roadrunner


Bezug
                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Di 28.06.2005
Autor: Lilith

Danke danke für dich schnellen Antworten.
Werde gleich mal gucken wie weit ich nun damit komme :)

Liebe Grüße,
Lilith

Bezug
                
Bezug
Differenzierbarkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 22:19 Di 28.06.2005
Autor: Quintana

Kann es sein, dass a beliebig wählbar ist, die Funktion also für alle a bei  [mm] x_{0}=2 [/mm] stetig ist?



Bezug
                        
Bezug
Differenzierbarkeit: Stetig ja! Differenzierbar?
Status: (Antwort) fertig Status 
Datum: 22:27 Di 28.06.2005
Autor: Roadrunner

Hallo Quintana!


Bei der Stetigkeit magst Du ja Recht haben.

Aber was ist mit der Differenzierbarkeit an der Stelle [mm] $x_0 [/mm] \ = \ 2$ ??
Das gilt nämlich nicht für beliebiges a !!


Gruß vom
Roadrunner


Bezug
                        
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Di 28.06.2005
Autor: Quintana

Mal auf die Schnelle:

Für a= -0,5 an der Stelle  [mm] x_{0}=2 [/mm] ist die Funktion differenzierbar??? Ich bin da jetzt auch nicht so besonders sicher in solchen Angelegenheiten...

Bezug
                                
Bezug
Differenzierbarkeit: Richtig !!
Status: (Antwort) fertig Status 
Datum: 23:03 Di 28.06.2005
Autor: Roadrunner

Hallo Quintana!


> Für a= -0,5 an der Stelle  [mm]x_{0}=2[/mm] ist die Funktion
> differenzierbar???

[daumenhoch] Stimmt genau!


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]