matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Differenzierbarkeit
Differenzierbarkeit < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:38 Di 11.01.2011
Autor: mathestudent111

Aufgabe
Untersuchen Sie die folgende Funktion auf Differenzierbarkeit in ihrem Definitionsbereich.


Hallo Leute:

ich muss diese Funktion auf Differenzierbarkeit untersuchen:

f(x) = [mm] \bruch{(1+x)e^x}{2+x^2} [/mm]


Ich weiß eben die Definition mit der Differenzierbarkeit.

lim (n gegen [mm] x_{0})... [/mm] dann setze ich [mm] \bruch{f(x)-f(x_0)}{x-x_0} [/mm] ein,
aber ich weiß nicht wie ich genau machen soll.

Ich hoffe Ihr könnt mich helfen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differenzierbarkeit: SchulMatheLexikon
Status: (Antwort) fertig Status 
Datum: 22:04 Di 11.01.2011
Autor: informix

Hallo mathestudent und [willkommenmr],

> Untersuchen Sie die folgende Funktion auf
> Differenzierbarkeit in ihrem Definitionsbereich.
>  
> Hallo Leute:
>  
> ich muss diese Funktion auf Differenzierbarkeit
> untersuchen:
>  
> f(x) = [mm]\bruch{(1+x)e^x}{2+x^2}[/mm]
>  
>
> Ich weiß eben die Definition mit der Differenzierbarkeit.
>  
> lim (n gegen [mm]x_{0})...[/mm] dann setze ich
> [mm]\bruch{f(x)-f(x_0)}{x-x_0}[/mm] ein,
>  aber ich weiß nicht wie ich genau machen soll.

Deine Definition ist nicht ganz korrekt, [guckstduhier] lies mal hier über den MBDifferenzenquotienten und frag dann konkreter, wenn's noch klemmt.

>  
> Ich hoffe Ihr könnt mich helfen!
>  

Gruß informix

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Di 11.01.2011
Autor: mathestudent111

zuerst danke für die Antwort. :)
ich meine natürlich lim (x gegen [mm] x_0). [/mm]

Aber wenn ich f(x) und [mm] f(x_0) [/mm] einsetze komme ich auf kein Ergebnis.

Könnt ihr mir ein Ansatz geben?


Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mi 12.01.2011
Autor: fred97

Ich kann mir nicht vorstellen, dass Ihr diese Funktion

            $ [mm] \bruch{(1+x)e^x}{2+x^2} [/mm] $

mit Hilfe des Differenzenquotienten auf Differenzierbarkeit untersuchen sollt.

Ihr hattet sicher Sätze über Summen, Produkte, Quotienten, ... differenzierbarer Funktionen.

Verwende diese

FRED

Bezug
                                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mi 12.01.2011
Autor: mathestudent111

Soll ich jetzt f(x) aufteilen?

Also in

a(x) = [mm] (1+x)e^x [/mm]
b(x) = [mm] \bruch{1}{2+x^2} [/mm]

Dann a(x) und b(x) auf Differenzierbarkeit untersuchen mit dem Differenzenquotienten....

Wenn es differenzierbar ist, dann ist a(x) * b(x) auch differenzierbar.

Ist dieser Weg richtig?

Bezug
                                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 12.01.2011
Autor: schachuzipus

Hallo mathestudent111,


> Soll ich jetzt f(x) aufteilen?
>  
> Also in
>  
> a(x) = [mm](1+x)e^x[/mm]
>  b(x) = [mm]\bruch{1}{2+x^2}[/mm]

Ja, zB. oder alternativ [mm]b(x)=2+x^2[/mm] und die Aussage über die Diffbarkeit eines Quotienten zweier diffbarer Funktionen hernehmen.

(Beachte, dass [mm]b(x)\neq 0[/mm] für alle [mm] $x\in\IR$) [/mm]

>  
> Dann a(x) und b(x) auf Differenzierbarkeit untersuchen mit
> dem Differenzenquotienten....

Das ist harter Tobak! Teile etwa [mm]a(x)[/mm] noch auf in [mm]a_1(x)=1+x[/mm] und [mm]a_2(x)=e^x[/mm].

Was sagt die Produktregel?

Ich denke, Polynome musst du wohl nicht weiter zerbröseln (auch wenn du es könntest)

>  
> Wenn es differenzierbar ist, dann ist a(x) * b(x) auch
> differenzierbar.

Ja!

>  
> Ist dieser Weg richtig?

Du kommst - wenn du weit genug aufdröselst - auf "elementare" Funktionen, deren Diffbarkeit ihr mit Sicherheit schon gezeigt habe.

Dann kannst du mit den verschiedenen Kompositionen von diffbaren Funktionen argumentieren.

Wie weit du aufdröseln solltest, hängt von dem ab, was ihr bereits gezeigt habt ...


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]