matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Differenzierbarkeit
Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Idee
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 08.07.2009
Autor: trixi28788

Aufgabe
Es sei I ⊂ R ein offenes Intervall, f : I → R stetig und F : I × I → R eine reelle Funktion mit den beiden folgenden Eigenschaften:

i) Für alle a, b, c ∈ I gilt: F(a, b) = F(a, c) + F(c, b).
ii) Es seien m,M ∈ R und x, y ∈ I, so daß [x, y] ⊂ I und m ≤ [mm] f(\varepsilon) [/mm] ≤ M für alle [mm] \varepsilon [/mm] ∈ [x, y].
Dann gilt m(y − x) ≤ F(x, y) ≤ M(y − x)

Zeigen Sie, daß für beliebiges [mm] x_0 [/mm] ∈ I die Funktion I ∋ x → [mm] F(x_0, [/mm] x) auf I differenzierbar ist mit Ableitung f.

Hallo Leute,

ich bin echt verzweifelt. Ich brauche die Lösung von der Aufgabe unbedingt und ich weis einfach nicht wie ich es lösen soll. Ich brauche die Punkte um zur Klausur zugelassen zu sein. Kann mir bitte bitte jemand helfen?

        
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:31 Mi 08.07.2009
Autor: trixi28788

Achja ich hab mich bei Differenzierbarkeit nur verschrieben ;)

Bezug
        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Do 09.07.2009
Autor: fred97

Merkwürdige Aufgabe ......

Sei $g(x) := [mm] F(x_0,x)$ [/mm]

Sei z [mm] \in [/mm] I (fest) . Zu zeigen: g ist in z differenzierbar und $g'(z) = f(z)$


Anleitung:

Sei x >z.

1. Es gilt: $g(x)-g(z) = F(z,x)$

2. Sei [mm] n_x [/mm] = min { f(t): t [mm] \in [/mm] [z,x] } und [mm] N_x [/mm] = max { f(t): t [mm] \in [/mm] [z,x] }

Da f stetig ist, folgt: [mm] n_x, N_x \to [/mm] f(z) für x [mm] \to [/mm] z

3. Es gilt (wegen 1.und nach Vor.)

                [mm] $n_x(z-x) \le [/mm] g(x)-g(z) [mm] \le N_x(z-x) [/mm]


Somit:  [mm] $n_x \le \bruch{g(x)-g(z)}{z-x} \le N_x$ [/mm]

Jetzt x [mm] \to [/mm] z. Damit ist g rechtsseitig differenzierbar mit rechtsseitiger Ableitun f(z)

Genauso verfährt man mit der linksseitigen Ableitung

FRED

Bezug
                
Bezug
Differenzierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 Do 09.07.2009
Autor: trixi28788

Danke danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]