matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisDifferenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Differenzierbarkeit
Differenzierbarkeit < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Mi 24.10.2007
Autor: wieZzZel

Aufgabe
Man untersuche folgende Funktionen   [mm] f:\IC\to\IC [/mm] auf Diff.barkeit:

a) f(z)=5i                  b) f(z)=3*Re(z)

Hallo...

Also die Beide Aufgaben scheinen mir zu einfach, gibt es da eine Falle???

allg: [mm] f(z)=f(z_0)+(z-z_0)*g(z) [/mm] wobei g stetig


zu a)

[mm] f(z)=5i=5i+(z-z_0)*g(z) \Rightarrow [/mm] 0=g(z) ist stetig, klar...


zu b)

[mm] f(z)=3Re(z)=3*Re(z_o)+(z-z_0)*g(z) \Rightarrow g(z)=\br{\overbrace{3(Re(z)-Re(z_0))}^{\in\IR}}{z-z_0} [/mm]   ist offensichtlich stetig...



also Beide Fkt diffbar mit Ableitung f'(z)=0



Stimmt das so???


Danke für eure Hilfe sagt Röby

        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 24.10.2007
Autor: leduart

Hallo Röby

> Man untersuche folgende Funktionen   [mm]f:\IC\to\IC[/mm] auf
> Diff.barkeit:
>  
> a) f(z)=5i                  b) f(z)=3*Re(z)
>  Hallo...
>  
> Also die Beide Aufgaben scheinen mir zu einfach, gibt es da
> eine Falle???

scheint so!

> allg: [mm]f(z)=f(z_0)+(z-z_0)*g(z)[/mm] wobei g stetig
>  
>
> zu a)
>  
> [mm]f(z)=5i=5i+(z-z_0)*g(z) \Rightarrow[/mm] 0=g(z) ist stetig,
> klar...

Richtig!

>
> zu b)
>  
> [mm]f(z)=3Re(z)=3*Re(z_o)+(z-z_0)*g(z) \Rightarrow g(z)=\br{\overbrace{3(Re(z)-Re(z_0))}^{\in\IR}}{z-z_0}[/mm]
>   ist offensichtlich stetig...

Wieso ist das offensichtlich stetig bei [mm] z_0 [/mm]
isses nämlich nicht!
sei [mm] z_0=x0+iy0 [/mm]  nimm [mm] z_n=xn+iyn [/mm]    a)xn=xo+1/n    [mm] yn=y0+1/n^2 [/mm]   GW=1
                                   [mm] b)xn=x0+1/n^2 [/mm]  yn=y0+1/n     GW=0

Stetigkeit muss man beweisen! nix mit  "offensichlich"!(auch wenns wahr wäre)

>
>
> also Beide Fkt diffbar mit Ableitung f'(z)=0
> Stimmt das so???

leider nicht.
Gruss leduart

Bezug
                
Bezug
Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Do 25.10.2007
Autor: wieZzZel

Hallo leduard...

Danke erstmal für die Antwort:

nochmal zusammengefasst (zu b):


sei [mm] z_0=x_0+i*y_0 [/mm] und [mm] z_n=x_n+i*y_n [/mm] (d.h. [mm] z_n [/mm] eine Folge in [mm] \IC) [/mm]

nun wähle ich [mm] (x_n\to x_n [/mm] und [mm] y_n\to y_0): [/mm]
  a) [mm] x_n=x_0+\br{1}{n} [/mm] und [mm] y_n=y_0+\br{1}{n^2} [/mm]   welcher GW ist da 1???

[mm] f(z_n)=f(z_0)+(z_n-z_0)*g(z) [/mm]

[mm] 3(x_0+\br{1}{n})=3x_0+(\br{1}{n}+i*\br{1}{n^2})*g(z) [/mm]

also [mm] g(z)=\br{n}{n+i} [/mm]   ist dieser GW für n gegen [mm] \infty [/mm] 1


bei b)

[mm] x_n=x_0+\br{1}{n^2} [/mm] und [mm] y_n=y_0+\br{1}{n} [/mm]   welcher GW ist da 0???

[mm] f(z_n)=f(z_0)+(z_n-z_0)*g(z) [/mm]

[mm] 3(x_0+\br{1}{n^2})=3x_0+(\br{1}{n^2}+i*\br{1}{n})*g(z) [/mm]

also [mm] g(z)=\br{1}{1+in} [/mm]   ist dieser GW für n gegen [mm] \infty [/mm] 0




Stimmt das so????

Bezug
                        
Bezug
Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Do 25.10.2007
Autor: leduart

Hallo
Ich würde für den GW den Betrag nehmen. Aber sonst ist alles etwa richtig.

ich hoff du hast gelernt nicht so leichtsinnig mit "stetig" umzugehen,
Es fehlt die Folgerung g(z) unstetig, also  f(z) nicht diffb.
Gruss leduart

>
> sei [mm]z_0=x_0+i*y_0[/mm] und [mm]z_n=x_n+i*y_n[/mm] (d.h. [mm]z_n[/mm] eine Folge in
> [mm]\IC)[/mm]
>  
> nun wähle ich [mm](x_n\to x_n[/mm] und [mm]y_n\to y_0):[/mm]
> a) [mm]x_n=x_0+\br{1}{n}[/mm] und [mm]y_n=y_0+\br{1}{n^2}[/mm]   welcher GW
> ist da 1???
>  
> [mm]f(z_n)=f(z_0)+(z_n-z_0)*g(z)[/mm]
>  
> [mm]3(x_0+\br{1}{n})=3x_0+(\br{1}{n}+i*\br{1}{n^2})*g(z)[/mm]
>  
> also [mm]g(z)=\br{n}{n+i}[/mm]   ist dieser GW für n gegen [mm]\infty[/mm] 1

hier [mm] g(z_n) [/mm] nicht g(z) und irgendwo muss stehen dass das ein GW für z gegen [mm] z_0 [/mm] ist.
warum fängst du wieder von vorn an, dein g(z) war ja richtig definiert, du muss nur zeigen ,dass es unstetig ist.

>
> bei b)
>  
> [mm]x_n=x_0+\br{1}{n^2}[/mm] und [mm]y_n=y_0+\br{1}{n}[/mm]   welcher GW ist
> da 0???
>  
> [mm]f(z_n)=f(z_0)+(z_n-z_0)*g(z)[/mm]
>  
> [mm]3(x_0+\br{1}{n^2})=3x_0+(\br{1}{n^2}+i*\br{1}{n})*g(z)[/mm]
>  
> also [mm]g(z)=\br{1}{1+in}[/mm]   ist dieser GW für n gegen [mm]\infty[/mm]
> 0

im Prinzip, die Formulierungen sind noch unsauber.
Kurz wäre: wenn Im(z) schneller gegen 0 geht als Re(z) konv. g(z) bei [mm] z_0 [/mm] gegen 1, umgekehrt gegen 0.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]