matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDifferenzier von Kurven ...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Differenzier von Kurven ...
Differenzier von Kurven ... < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzier von Kurven ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Mi 06.07.2011
Autor: Sprudel

Aufgabe
Ein Weg [mm] \mu [/mm] : (0,1) ->  [mm] \IR^{2}, [/mm] der in [mm] \mu [/mm] (0)=0 beginnt, sei wie folgt parametrisiert:

[mm] \mu [/mm] := [mm] \vektor{t \\ t^{2} cos (\bruch{\pi}{t^{2}})} [/mm] , t > 0

a) Weisen Sie nach,dass [mm] \mu [/mm] zwar differenzierbar, aber nicht stetig differenzierbar ist.

b) Zeigen sie, dass die Kurve nicht rektifierbar ist.

Könnt ihr mir bitte Tipps geben, wie ich vorzugehen habe.

Ich verzweifle gerade wirklich total...

Danke danke danke

        
Bezug
Differenzier von Kurven ...: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 06.07.2011
Autor: fred97


> Ein Weg [mm]\mu[/mm] : (0,1) ->  [mm]\IR^{2},[/mm] der in [mm]\mu[/mm] (0)=0 beginnt,

> sei wie folgt parametrisiert:
>  
> [mm]\mu[/mm] := [mm]\vektor{t \\ t^{2} cos (\bruch{\pi}{t^{2}})}[/mm] , t >
> 0
>  
> a) Weisen Sie nach,dass [mm]\mu[/mm] zwar differenzierbar, aber
> nicht stetig differenzierbar ist.
>  
> b) Zeigen sie, dass die Kurve nicht rektifierbar ist.
>  Könnt ihr mir bitte Tipps geben, wie ich vorzugehen
> habe.


Schau Dir die 2. Komponente von [mm] \mu [/mm] an, ich nenne sie g:

             g(0)=0, $g(t)= [mm] t^{2} [/mm] cos [mm] (\bruch{\pi}{t^{2}})$ [/mm] für t [mm] \in [/mm] (0,1]

Zu a): Zeige : g ist auf [0,1] differenzierbar, aber g' ist auf  [0,1] nicht stetig.

Zu b): Zeige: g ist auf [0,1]  nicht von beschränkter Variation.

FRED

>  
> Ich verzweifle gerade wirklich total...
>  
> Danke danke danke  


Bezug
                
Bezug
Differenzier von Kurven ...: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:42 Mi 06.07.2011
Autor: Sprudel

Also ich hab ein ähnliches Beispiel im Buch allerdings war dieser Beweis zu

$ [mm] \mu [/mm] $ := $ [mm] \vektor{t \\ t cos (\bruch{\pi}{t})} [/mm] $ , t > (also ohne [mm] t^2, [/mm] aber das macht in diesem Beweis doch keinen Unterschie oder ?????)

Es sei f wie im ersten Beitrag. Dann muss gezeigt werden, dass für alle c [mm] \in \mathbb{R_+} [/mm] einer Zerlegung Z exestiert mit
[mm] \sum_{i=0}^{n-1} ||f(t_{k}) [/mm] - [mm] f(t_{k-1})|| \ge [/mm] c .

Betrachte die Zerlegung mit
[mm] t_{k} [/mm] = [mm] \frac{1}{n-k}\text{ für } [/mm] k = [mm] \{0, \cdots , n-1\} \text{ und } [/mm] n [mm] \ge [/mm] 1,

dann gilt:
[mm] \sum_{i=0}^{n-1} ||f(t_{k}) [/mm] - [mm] f(t_{k-1})||=\sum_{i=0}^{n-1} ||(\frac{1}{n-k}-\frac{1}{n-k+1},\frac{\cos ((n-k)\pi )}{n-k}-\frac{\cos ((n-k+1)\pi )}{n-k+1}|| [/mm]
[mm] =\sum_{i=0}^{n-1} \sqrt{(\frac{1}{n-k}-\frac{1}{n-k+1})^2+(\frac{\cos ((n-k)\pi )}{n-k}-\frac{\cos ((n-k+1)\pi )}{n-k+1})^2}. [/mm]
Mit den Abschätzungen
[mm] (\frac{1}{n-k}-\frac{1}{n-k+1})^2 [/mm] = [mm] (\frac{1}{(n-k)^2+(n-k)})^2 \ge \frac{1}{4(n-k)^4} [/mm]

und

[mm] (\frac{1}{n-k} \cos ((n-k)\pi )-\frac{1}{n-k+1} \cos ((n-k+1)\pi ))^2 \ge \frac{1}{(n-k+1)^2} [/mm]

folgt schließlich:
[mm] \sum_{i=0}^{n-1} ||f(t_{k}) [/mm] - [mm] f(t_{k-1})|| \ge \sum_{i=0}^{n-1} \sqrt{\frac{1}{4(n-k)^4}+\frac{1}{(n-k+1)^2}}\ge \sum_{i=0}^{n-1} \sqrt{\frac{1}{(n-k+1)^2}}=\sum_{i=0}^{n-1} \frac{1}{n-k+1}. [/mm]

Weil die harmonische Reihe divergiert, findet man für alle c [mm] \in \mathbb{R_+} [/mm] ein [latex]n [mm] \in \mathbb{N}, [/mm] sodass gilt:

[mm] \sum_{i=0}^{n-1} ||f(t_{k}) [/mm] - [mm] f(t_{k-1})|| \ge [/mm] c .

Bezug
                        
Bezug
Differenzier von Kurven ...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 08.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]