matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenDifferenzialgleichung[einfach]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentialgleichungen" - Differenzialgleichung[einfach]
Differenzialgleichung[einfach] < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung[einfach]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Do 06.09.2012
Autor: quasimo

Aufgabe
Sei c [mm] \in \IR [/mm] und f : [mm] \IR [/mm] -> [mm] \IR [/mm] ist differenzierbar . Wenn f die Differentialgleichung erfüllt:
f'(x) = c* f(x)
[mm] \forall [/mm] x [mm] \in \IR [/mm]
dann muss f von der form f(x)=f(0) exp(cx)
Hinweis: Arbeite mit g(x):= f(x) exp(- cx)


g(x):= f(x) exp(-cx)
g'(x)= [mm] -ce^{-c x} [/mm] f(x) + [mm] e^{ -cx} [/mm] f'(x)= [mm] -ce^{- cx} [/mm] f(x ) + [mm] e^{-c x}c [/mm] f(x)=0

g(0) = [mm] \frac{f(x)}{exp(cx)} [/mm] * exp(-c*0)= [mm] \frac{f(x)}{exp(cx)} [/mm] = f(0)= g(x)

Wie folgt aber nun f'(x) = c* f(x). Bin ich blind, dass ich da den letzten schritt nicht sehe?

LG,
quasimo

        
Bezug
Differenzialgleichung[einfach]: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Do 06.09.2012
Autor: wauwau

du nimmst an $ [mm] f(x)=e^{-cx}g(x)$ [/mm] wäre ein Lösung und zeigst dass g(x) konstant sein muss..

Bezug
                
Bezug
Differenzialgleichung[einfach]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Do 06.09.2012
Autor: quasimo

hallo,
wie meinst du das mit g konstant sein?
Das verstehe ich nicht.

LG,
qausimo

Bezug
        
Bezug
Differenzialgleichung[einfach]: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Do 06.09.2012
Autor: leduart

Hallo
> Sei c [mm]\in \IR[/mm] und f : [mm]\IR[/mm] -> [mm]\IR[/mm] ist differenzierbar . Wenn
> f die Differentialgleichung erfüllt:
>  f'(x) = c* f(x)
>  [mm]\forall[/mm] x [mm]\in \IR[/mm]
>  dann muss f von der form f(x)=f(0)
> exp(cx)
>  Hinweis: Arbeite mit g(x):= f(x) exp(- cx)
>  
> g(x):= f(x) exp(-cx)
>  g'(x)= [mm]-ce^{-c x}[/mm] f(x) + [mm]e^{ -cx}[/mm] f'(x)= [mm]-ce^{- cx}[/mm] f(x )
> + [mm]e^{-c x}c[/mm] f(x)=0

jetzt benutze  f'(x) = c* f(x), d.h. setz es ein! was folgt dann für g'(x)? was bedeutet das für g(x)?

> g(0) = [mm]\frac{f(x)}{exp(cx)}[/mm] * exp(-c*0)=
> [mm]\frac{f(x)}{exp(cx)}[/mm] = f(0)= g(x)

Das ist unsinnig geschrieben! du kannst 0 nicht "teilweise" einsetzen
also berechne g(0) richtig!

> Wie folgt aber nun f'(x) = c* f(x). Bin ich blind, dass ich
> da den letzten schritt nicht sehe?

Das soll nicht folgen, sondern du sollst aus f'(x) = c* f(x). die eindeutige Lösung [mm] f(0)*e^{cx} [/mm] folgern
dasss das eine Lösung ist kannst du durch einsetzen zeigen. nun nimm an, es gibt eine zweite in anderer Form, mit der bildest du dann g.
Gruss leduart

> LG,
>  quasimo


Bezug
                
Bezug
Differenzialgleichung[einfach]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Fr 07.09.2012
Autor: quasimo


>  Hinweis: Arbeite mit g(x):= f(x) exp(- cx)
>  
> g(x):= f(x) exp(-cx)
>  g'(x)= $ [mm] -ce^{-c x} [/mm] $ f(x) + $ [mm] e^{ -cx} [/mm] $ f'(x)= $ [mm] -ce^{- cx} [/mm] $ f(x )
> + $ [mm] e^{-c x}c [/mm] $ f(x)=0

> jetzt benutze  f'(x) = c* f(x), d.h. setz es ein! was folgt dann für g'(x)? was bedeutet das für g(x)?

Das habe ich doch oben im vorletzten Gleichheitszeichen benutzt.
Es folgt dass [mm] \exists [/mm] Konstante k [mm] \in \IR: [/mm] g(x) = k [mm] \forall [/mm] x [mm] \in \IR [/mm]

> Das ist unsinnig geschrieben! du kannst 0 nicht "teilweise" einsetzen
> also berechne g(0) richtig!

g(0) = f(0) * exp(-c*0) = f(0)

f'(x) = c* f(x)
So ist f(x)= f(0) * exp(cx) denn
f'(x) = c* f(0) * exp(cx) =c*g(0)*exp(cx)=c*g(x)*exp(cx)=c*(f(x)*exp(-cx))*exp(cx)= c*f(x)=f'(x)
Jetzt fehlt noch die Eindeutigkeitsaussage und die sagst du hat mit dem g im Hinweis zu tun.
Angenommen es gibt eine andere Form f(x) darzustellen....
??

LG,
quasimo


Bezug
                        
Bezug
Differenzialgleichung[einfach]: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Fr 07.09.2012
Autor: leduart

Hallo
> >  Hinweis: Arbeite mit g(x):= f(x) exp(- cx)

>  >  
> > g(x):= f(x) exp(-cx)
>  >  g'(x)= [mm]-ce^{-c x}[/mm] f(x) + [mm]e^{ -cx}[/mm] f'(x)= [mm]-ce^{- cx}[/mm] f(x
> )
>  > + [mm]e^{-c x}c[/mm] f(x)=0

>  
> > jetzt benutze  f'(x) = c* f(x), d.h. setz es ein! was folgt
> dann für g'(x)? was bedeutet das für g(x)?
> Das habe ich doch oben im vorletzten Gleichheitszeichen
> benutzt.
> Es folgt dass [mm]\exists[/mm] Konstante k [mm]\in \IR:[/mm] g(x) = k [mm]\forall[/mm]
> x [mm]\in \IR[/mm]

erstmal folgt, dass g'(x)=0 und daraus g(x)=konst=g(0)=f(0)
und nicht ein beliebiges k

>  

> g(0) = f(0) * exp(-c*0) = f(0)
>  
> f'(x) = c* f(x)

  So ist f(x)= f(0) * exp(cx)  eine Lösung denn daraus folgt

>  f'(x) = c* f(0) * exp(cx)

=f(0)*f(x)
hier ist dein g nicht am platz, du zeigst doch nur  durch einsetzen dass f(x)= f(0) * exp(cx) eine Lösung ist.
jetzt angenommen, es gibt eine zweite Lösung [mm] f1(x)\ne [/mm]  f(0) * exp(cx) mit demselben Anfangswert f1(0)=f(0)
dann bilde f1*g oder (f1-f)*g im ersten Fall f1=f
im zweiten Fall f1-f=0
die Rechnung läuft wie gehabt.
Gruss leduart




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]