matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differenzialgleichung
Differenzialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzialgleichung: Exakte differnzialgleichung
Status: (Frage) überfällig Status 
Datum: 17:39 Do 28.10.2010
Autor: astronaut88

Aufgabe
Lösen Sie die Differnzialgleichung:

[mm] (2*x*y^4*e^y+2*x*y^3+y)dx [/mm] + [mm] (x^2*y^4*e^y-x^2*y^2-3x)dy=0 [/mm]

hi
ich ein problem mit der oben angeführten DGL. der angabe nach sieht die ja aus wie eine exakte, dennoch kann ich sie auch mit intergierenden faktor nicht lösen. laut meinen prof. kann man den nicht explizit darstellen.
wie kann ich diese dgl dennoch lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

danke

        
Bezug
Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:58 Fr 29.10.2010
Autor: reverend

Hallo astronaut88, [willkommenmr]

Ich kann Deine Frage sicher nicht beantworten, es sei denn, ich finde mit viel Glück und eher zufällig eine Lösung.

Kann es trotzdem sein, dass ein Exponent falsch ist?

> [mm](2*x*y^4*e^y+2*x*y^3+y)dx[/mm] + [mm](x^2*y^\red{4}*e^y-x^2*y^2-3x)dy=0[/mm]

Steht da statt der roten 4 vielleicht eine 3?

Grüße
reverend


Bezug
                
Bezug
Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:42 Fr 29.10.2010
Autor: astronaut88

hi
diese idee hatte ich auch schon, aber ist leider nicht so.
welche aussagen kann ich über diese DGL machen? denn eine exakte DGL ist ja nur dann exakt, wenn der Definitionsbereich keine Lücken hat, oder?
mfg

Bezug
                        
Bezug
Differenzialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Fr 29.10.2010
Autor: fred97


> hi
>  diese idee hatte ich auch schon, aber ist leider nicht
> so.
>  welche aussagen kann ich über diese DGL machen? denn eine
> exakte DGL ist ja nur dann exakt, wenn der
> Definitionsbereich keine Lücken hat, oder?

Nee, mach Dich mal hier schlau:

               http://de.wikipedia.org/wiki/Exakte_Differentialgleichung


FRED

>  mfg


Bezug
        
Bezug
Differenzialgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 So 28.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]