Differenzialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:42 Di 22.08.2006 | Autor: | night |
Aufgabe | In einer Stadt gibts es 40000 Haushalte, von denen nach Meinungsumfragen etwa jeder 5 für den Kauf eines neu auf den Markt gebrachten Haushaltsartikels in frage kommt.
Es ist damit zu rechnen, dass der Absatz des Artikels im laufen der zeit zunehmend schwieriger wird, da der kreis der möglichen käufer und deren kauflust abnimmt.
in den ersten 3 monaten werden 1700 stück des artikels verkauft. kann der hersteller davon ausgehen, dass innerhalb des ersten jahres mindestens 5500 stück verkauft werden? |
hi
habe folgendes berechnet?
f(t)= S-c*e^(kt)
f´(t)= k * (S-f(t))
f(3)=1700
f(12)=5500
f(t)= 8000*(1-e^-kt)
f(t)= 8000*1700*e^(-k3)
nach k aufgelöst k = - 2,92?
ist das richtig?
könnt ihr mir lösungsansätze geben
danke
mfg daniel
|
|
|
|
1. Die Aufgabe hat wohl nix mit Differentialgleichungen zu tun.
Statt
f(t)= 8000*1700*e^(-k3)
muss es wohl
[mm] 1700=8000*(1-e^{-3k}) [/mm] heißen
und da komme ich und MuPAD in seltener Übereinstimmung auf
[mm] k=-\frac13\ln\frac{63}{80}\approx0,07963063609
[/mm]
Das setzt man dann in
[mm] f(t)=8000*(1-e^{12k}) [/mm] ein und bekommt rund 4923, was deutlich kleiner als 5500 ist.
Gruß
Andreas
|
|
|
|