matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDifferenzenquotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Differenzenquotient
Differenzenquotient < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:00 Mo 05.06.2006
Autor: bobby

Hallo!

Eigentlich ist das denk ich eine leichte Aufgabe, aber ich komme trotzdem nicht mehr weiter, vielleicht kann mir einer von euch weiterhelfen:

Sei [mm] f:(a,b)\to\IR [/mm] zweimal stetig differenzierbar und [mm] x\in(a,b). [/mm] Zeige, dass dann [mm] f''(x)=\limes_{h\rightarrow0}\bruch{f(x+h)+f(x-h)-2f(x)}{h^{2}} [/mm] gilt.

Also, den Differenzenquotient für f' haben wir schon und jetzt soll ich also den für f'' herleiten.

Ich habs einmal folgendermaßen probiert:
[mm] f''(x)=\limes_{h\rightarrow0}\bruch{f'(x+h)-f'(x)}{h}=\limes_{h\rightarrow0}\bruch{f(x+2h)-2f(x+h)+f(x)}{h^{2}} [/mm]
und hier komm ich dann auch nicht weiter...

Dann hab ichs mal andersrum probiert:
[mm] f''(x)=\limes_{h\rightarrow0}\bruch{f(x+h)+f(x-h)-2f(x)}{h^{2}}=\limes_{h\rightarrow0}\bruch{\bruch{f(x+h)-f(x)}{h}+\bruch{f(x-h)-f(x)}{h}}{h} [/mm]
und dann ist ja der erste Bruch gleich f', aber weiter weis ich dann auch nicht...

        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mo 05.06.2006
Autor: felixf

Hallo Bobby!

> Eigentlich ist das denk ich eine leichte Aufgabe, aber ich
> komme trotzdem nicht mehr weiter, vielleicht kann mir einer
> von euch weiterhelfen:
>  
> Sei [mm]f:(a,b)\to\IR[/mm] zweimal stetig differenzierbar und
> [mm]x\in(a,b).[/mm] Zeige, dass dann
> [mm]f''(x)=\limes_{h\rightarrow0}\bruch{f(x+h)+f(x-h)-2f(x)}{h^{2}}[/mm]
> gilt.
>  
> Also, den Differenzenquotient für f' haben wir schon und
> jetzt soll ich also den für f'' herleiten.
>  
> Ich habs einmal folgendermaßen probiert:
>  
> [mm]f''(x)=\limes_{h\rightarrow0}\bruch{f'(x+h)-f'(x)}{h}=\limes_{h\rightarrow0}\bruch{f(x+2h)-2f(x+h)+f(x)}{h^{2}}[/mm]
>  und hier komm ich dann auch nicht weiter...
>  
> Dann hab ichs mal andersrum probiert:
>  
> [mm]f''(x)=\limes_{h\rightarrow0}\bruch{f(x+h)+f(x-h)-2f(x)}{h^{2}}=\limes_{h\rightarrow0}\bruch{\bruch{f(x+h)-f(x)}{h}+\bruch{f(x-h)-f(x)}{h}}{h}[/mm]
>  und dann ist ja der erste Bruch gleich f', aber weiter
> weis ich dann auch nicht...

Ich glaube so kommst du nicht weiter.

Versuch es doch mal wie folgt: Da die Funktion zweimal stetig diffbar ist, kannst du die Taylorentwicklung (um $x$) ersten Gerades von $f$ (mit Lagrange-Restglied) berechnen. Diese setzt du nun fuer den Bruch ein; dann hebt sich erstmal fast alles weg bis nur noch zweimal die zweite Ableitung uebrigbleibt. Wenn du jetzt $h$ gegen $0$ gehen laesst, so bekommst du unter Benutzung der Stetigkeit von $f''$ zu dem gewuenschten Ergebnis.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]