matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferenzenquotient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Differenzenquotient
Differenzenquotient < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzenquotient: berechnen
Status: (Frage) beantwortet Status 
Datum: 17:10 Mi 19.03.2014
Autor: AnnaHundi

heyho :-)
ich sitze gerade über folgender Aufgabe:
Es sei f: [mm] \IR [/mm] -> [mm] \IR [/mm] eine in [mm] x_0 [/mm] differenzierbare Funktion. Jetzt soll ich für a,b [mm] \in \IR [/mm] berechnen:
[mm] limes_{h \to 0}\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h} [/mm]

Was ist an dieser Stelle gefragt? Muss ich irgendetwas für [mm] x_0 [/mm] einsetzen? Wenn h beliebig klein wird, wird der gesamte Bruch doch groß oder?


LG

        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Mi 19.03.2014
Autor: fred97


> heyho :-)
>  ich sitze gerade über folgender Aufgabe:
>  Es sei f: [mm]\IR[/mm] -> [mm]\IR[/mm] eine in [mm]x_0[/mm] differenzierbare

> Funktion. Jetzt soll ich für a,b [mm]\in \IR[/mm] berechnen:
>  [mm]limes_{h \to 0}\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}[/mm]
>  
> Was ist an dieser Stelle gefragt?


Wie der Grenzwert ausfällt.

> Muss ich irgendetwas für
> [mm]x_0[/mm] einsetzen?


Nein.

>Wenn h beliebig klein wird, wird der gesamte

> Bruch doch groß oder?

Was ist "groß"  ???


Fall 1: a=0=b. Dann gibts nix zu tun.

Fall 2: a [mm] \ne [/mm] 0, b=0

Dann ist

[mm] $\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}=a*\frac{f(x_{0}+ah)-f(x_{0})}{ah} \to a*f'(x_0) [/mm] $ (h [mm] \to [/mm] 0)

Fall 3: a=0, b [mm] \ne [/mm] 0. Das machst Du jetzt mal.

Fall 4: a [mm] \ne [/mm] 0, b [mm] \ne [/mm] 0. Tipp:

[mm] f(x_{0}+ah)-f(x_{0}+bh)=f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh) [/mm]

Nun Fall 2/3.

FRED

>  
>
> LG


Bezug
                
Bezug
Differenzenquotient: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:07 Fr 21.03.2014
Autor: AnnaHundi


> Fall 1: a=0=b. Dann gibts nix zu tun.

Der Grenzwert ist dann =0 richtig?

>  
> Fall 2: a [mm]\ne[/mm] 0, b=0
>  
> Dann ist
>
> [mm]\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}=a*\frac{f(x_{0}+ah)-f(x_{0})}{ah} \to a*f'(x_0)[/mm]
> (h [mm]\to[/mm] 0)

ich kann den Weg nachvollziehen, aber wie erhälst du am Ende den Faktor [mm] f'(x_0)? [/mm] im Nenner müsste dazu doch auch zuvor [mm] x-x_{0} [/mm] stehen oder?

>  
> Fall 3: a=0, b [mm]\ne[/mm] 0. Das machst Du jetzt mal.

dann ich erhalte ich dann b* [mm] -f'(x_0) [/mm] ?
wenn das falsch ist ist es leider daran gescheitert dass ich den Fall 2 schon nicht vollständig verstanden habe

>  
> Fall 4: a [mm]\ne[/mm] 0, b [mm]\ne[/mm] 0. Tipp:
>  
> [mm]f(x_{0}+ah)-f(x_{0}+bh)=f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh)[/mm]

hier stehe ich leider kopmplett auf dem Schlauch



vielen Dank schonmal für deine Hilfe!
LG  


Bezug
                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Fr 21.03.2014
Autor: fred97


>
> > Fall 1: a=0=b. Dann gibts nix zu tun.
>  
> Der Grenzwert ist dann =0 richtig?
>  
> >  

> > Fall 2: a [mm]\ne[/mm] 0, b=0
>  >  
> > Dann ist
> >
> >
> [mm]\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}=a*\frac{f(x_{0}+ah)-f(x_{0})}{ah} \to a*f'(x_0)[/mm]
> > (h [mm]\to[/mm] 0)
>  
> ich kann den Weg nachvollziehen, aber wie erhälst du am
> Ende den Faktor [mm]f'(x_0)?[/mm] im Nenner müsste dazu doch auch
> zuvor [mm]x-x_{0}[/mm] stehen oder?


Ist f in [mm] x_0 [/mm] differenzierbar, so ist doch

[mm] f'(x_0)=\limes_{t \to 0}\bruch{f(x_0+t)-f(x_0)}{t} [/mm]



>  
> >  

> > Fall 3: a=0, b [mm]\ne[/mm] 0. Das machst Du jetzt mal.
>  
> dann ich erhalte ich dann b* [mm]-f'(x_0)[/mm] ?


Ja, schreibe aber besser [mm] $-b*f'(x_0)$ [/mm]


>  wenn das falsch ist ist es leider daran gescheitert dass
> ich den Fall 2 schon nicht vollständig verstanden habe
>  >  
> > Fall 4: a [mm]\ne[/mm] 0, b [mm]\ne[/mm] 0. Tipp:
>  >  
> >
> [mm]f(x_{0}+ah)-f(x_{0}+bh)=f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh)[/mm]
>  
> hier stehe ich leider kopmplett auf dem Schlauch


[mm] \bruch{f(x_{0}+ah)-f(x_{0}+bh)}{h}= \bruch{f(x_{0}+ah)-f(x_{0})}{h}+\bruch{f(x_{0})-f(x_{0}+bh)}{h} [/mm]

Klingelts jetzt ?

FRED

>  
>
>
> vielen Dank schonmal für deine Hilfe!
> LG  
>  


Bezug
                                
Bezug
Differenzenquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 22.03.2014
Autor: AnnaHundi


> >
> > > Fall 1: a=0=b. Dann gibts nix zu tun.
>  >  
> > Der Grenzwert ist dann =0 richtig?

stimmt das?

> > >  

> > > Fall 2: a [mm]\ne[/mm] 0, b=0
>  >  >  

>  
>
> Ist f in [mm]x_0[/mm] differenzierbar, so ist doch
>  
> [mm]f'(x_0)=\limes_{t \to 0}\bruch{f(x_0+t)-f(x_0)}{t}[/mm]


aber wie kommts das im Nenner nicht [mm] x_0 [/mm] - x steht?

> > >  

> > > Fall 3: a=0, b [mm]\ne[/mm] 0. Das machst Du jetzt mal.
>  >  
> > dann ich erhalte ich dann b* [mm]-f'(x_0)[/mm] ?
>  
>
> Ja, schreibe aber besser [mm]-b*f'(x_0)[/mm]
>  
>
> >  wenn das falsch ist ist es leider daran gescheitert dass

> > ich den Fall 2 schon nicht vollständig verstanden habe
>  >  >  
> > > Fall 4: a [mm]\ne[/mm] 0, b [mm]\ne[/mm] 0. Tipp:
>  >  >  
> > >
> >
> [mm]f(x_{0}+ah)-f(x_{0}+bh)=f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh)[/mm]
>  >  
> > hier stehe ich leider kopmplett auf dem Schlauch
>  
>
> [mm]\bruch{f(x_{0}+ah)-f(x_{0}+bh)}{h}= \bruch{f(x_{0}+ah)-f(x_{0})}{h}+\bruch{f(x_{0})-f(x_{0}+bh)}{h}[/mm]
>  
> Klingelts jetzt ?

ja ich denke schon, das ist doch dann:

[mm] f'(x_0)*a [/mm] + [mm] b*-f'(x_0) [/mm] oder?



Danke für deine Geduld.


LG


Bezug
                                        
Bezug
Differenzenquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Sa 22.03.2014
Autor: DieAcht

Hallo Anna,


> > > > Fall 1: a=0=b. Dann gibts nix zu tun.
>  >  >  
> > > Der Grenzwert ist dann =0 richtig?
>  
> stimmt das?

Ja, aber das kannst du so nicht sagen. Dafür gibt es Punkt-
abzüge in einer Klausur. Besser: Für $a=b=0$ geht der Aus-
druck für [mm] $h\to\ [/mm] 0$ gegen Null. Das kannst du auch mal schön auf-
schreiben. Sei $a=b=0$, dann gilt:

      [mm] \lim_{h \to 0}\frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}=\lim_{h \to 0}\frac{f(x_{0}+0*h)-f(x_{0}+0*h)}{h}=\lim_{h \to 0}\frac{f(x_{0})-f(x_{0})}{h}=\lim_{h \to 0}0=0. [/mm]

> > > >  

> > > > Fall 2: a [mm]\ne[/mm] 0, b=0
>  >  >  >  
>
> >  

> >
> > Ist f in [mm]x_0[/mm] differenzierbar, so ist doch
>  >  
> > [mm]f'(x_0)=\limes_{t \to 0}\bruch{f(x_0+t)-f(x_0)}{t}[/mm]
>  
>
> aber wie kommts das im Nenner nicht [mm]x_0[/mm] - x steht?

Du meinst sicher [mm] $x-x_0$. [/mm] Das ist äquivalent, denn es gilt:

      [mm] \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\overset{h:=x-x_0}{=}\blue{\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}}. [/mm]

> > > >  

> > > > Fall 3: a=0, b [mm]\ne[/mm] 0. Das machst Du jetzt mal.
>  >  >  
> > > dann ich erhalte ich dann b* [mm]-f'(x_0)[/mm] ?
>  >  
> >
> > Ja, schreibe aber besser [mm]-b*f'(x_0)[/mm]
>  >  
> >
> > >  wenn das falsch ist ist es leider daran gescheitert dass

> > > ich den Fall 2 schon nicht vollständig verstanden habe
>  >  >  >  
> > > > Fall 4: a [mm]\ne[/mm] 0, b [mm]\ne[/mm] 0. Tipp:
>  >  >  >  
> > > >
> > >
> >
> [mm]f(x_{0}+ah)-f(x_{0}+bh)=f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh)[/mm]
>  >  >  
> > > hier stehe ich leider kopmplett auf dem Schlauch
>  >  
> >
> > [mm]\bruch{f(x_{0}+ah)-f(x_{0}+bh)}{h}= \bruch{f(x_{0}+ah)-f(x_{0})}{h}+\bruch{f(x_{0})-f(x_{0}+bh)}{h}[/mm]
>  
> >  

> > Klingelts jetzt ?
>  
> ja ich denke schon, das ist doch dann:
>  
> [mm]f'(x_0)*a[/mm] + [mm]b*-f'(x_0)[/mm] oder?

Wie kommst du denn darauf? Schreib das doch mal sauber auf.
Sei [mm] a\not=0 [/mm] und [mm] b\not=0, [/mm] dann gilt:

      [mm] \frac{f(x_{0}+ah)-f(x_{0}+bh)}{h}=\frac{f(x_{0}+ah)-f(x_0)+f(x_0)-f(x_{0}+bh)}{h}=\frac{f(x_0+ah)-f(x_0)}{h}+\frac{f(x_0)-f(x_0+bh)}{h}= [/mm]

      [mm] \overset{a,b\not=0}=a\left(\frac{f(x_0+ah)-f(x_0)}{ah}\right)+b\left(\frac{f(x_0)-f(x_0+bh)}{bh}\right)=a\left(\frac{f(x_0+ah)-f(x_0)}{ah}\right)-b\left(\frac{f(x_0+bh)-f(x_0)}{bh}\right). [/mm]

1. Betrachte den Grenzwert für [mm] $h\to [/mm] 0$.
2. Benutze die Definition von oben bzw. die Grenzwertsätze.
3. Ausklammern.

Jetzt du. ;-)

edit: Okay, ich habe mich verlesen. Im Prinzip hast du alles
richtig gemacht, aber dennoch keine Klammern oder Ähnliches
gesetzt. Außerdem solltest du den Tipp von Fred zu Herzen
nehmen und lieber [mm] $-bf'(x_0)$ [/mm] schreiben. Punkt drei kannst du natür-
lich auch noch machen.


> Danke für deine Geduld.
>  
>
> LG


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]