matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzengleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Differenzengleichungen
Differenzengleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Fr 01.07.2011
Autor: Cyantific

Aufgabe
Berechnen Sie, für welche a [mm] \in \IR^+ [/mm] die Differenzengleichung
[mm] y_{t}=ay_{t-1} [/mm] - [mm] 4a^4y_{t-2} [/mm] eine gedämpfte Schwingung als Lösung hat.

Nach der Umstellung komme ich auf:

[mm] y_{t+2}-ay_{t+1}+4a^4y_{t}=0 [/mm]

mein p ist somit -a und mein q ist [mm] 4a^4. [/mm]

--> d= -(-a)/2 [mm] \pm \wurzel{(-a)^2/4 -4a^4} [/mm]

Weiter komme ich nicht.
Kann mir jemand erklären was gelten muss (unabhängig von der Lösung) und wie ich weiter vorgehe?

Die Lösung soll sein:

[mm] a^2/4 [/mm] - [mm] 4a^4 [/mm] > 0 --> 0 < [mm] \beta [/mm] = [mm] \wurzel{a^2/4 -4a^4} [/mm] < a/2 = [mm] \alpha [/mm]
--> [mm] (\alpha+\beta) [/mm] > 0 und [mm] (\alpha-\beta) [/mm] > 0. Keine Schwingung.

Es muss gelten: [mm] a^2/4 [/mm] - [mm] 4a^4 [/mm] < 0 und [mm] \wurzel{4a^4} [/mm] <1.

Somit 1/4 - [mm] 4a^2 [/mm] < 0 --> |a| > 1/4 und |a| < [mm] 1/\wurzel{2}. [/mm]

Also 1/4 < a < [mm] 1/\wurzel{2}. [/mm]


Gruss

        
Bezug
Differenzengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Fr 01.07.2011
Autor: MathePower

Hallo Cyantific,

> Berechnen Sie, für welche a [mm]\in \IR^+[/mm] die
> Differenzengleichung
> [mm]y_{t}=ay_{t-1}[/mm] - [mm]4a^4y_{t-2}[/mm] eine gedämpfte Schwingung als
> Lösung hat.
>  Nach der Umstellung komme ich auf:
>
> [mm]y_{t+2}-ay_{t+1}+4a^4y_{t}=0[/mm]
>  
> mein p ist somit -a und mein q ist [mm]4a^4.[/mm]
>  
> --> d= -(-a)/2 [mm]\pm \wurzel{(-a)^2/4 -4a^4}[/mm]
>  
> Weiter komme ich nicht.
>  Kann mir jemand erklären was gelten muss (unabhängig von
> der Lösung) und wie ich weiter vorgehe?


Untersuche den Ausdruck unter der Wurzel.

Um eine Schwingung als Lösung zu erhalten,
muß der  Ausdruck unter der Wurzel kleiner als 0 sein.


>  
> Die Lösung soll sein:
>  
> [mm]a^2/4[/mm] - [mm]4a^4[/mm] > 0 --> 0 < [mm]\beta[/mm] = [mm]\wurzel{a^2/4 -4a^4}[/mm] < a/2
> = [mm]\alpha[/mm]
>  --> [mm](\alpha+\beta)[/mm] > 0 und [mm](\alpha-\beta)[/mm] > 0. Keine

> Schwingung.
>  
> Es muss gelten: [mm]a^2/4[/mm] - [mm]4a^4[/mm] < 0 und [mm]\wurzel{4a^4}[/mm] <1.
>  
> Somit 1/4 - [mm]4a^2[/mm] < 0 --> |a| > 1/4 und |a| < [mm]1/\wurzel{2}.[/mm]
>  
> Also 1/4 < a < [mm]1/\wurzel{2}.[/mm]
>  
>
> Gruss


Gruss
MathePower

Bezug
                
Bezug
Differenzengleichungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:24 Sa 02.07.2011
Autor: Cyantific

Hmmm.... Nochmal:

[mm] a^2/4 -4a^4 [/mm] > 0 --> 0 < [mm] \beta [/mm] = [mm] \wurzel{a^2/4 -4a^4} [/mm] < a/2 = [mm] \alpha [/mm]
Ausdruck unter der Wurzel > 0, somit [mm] \beta [/mm] > 0, aber < [mm] \alpha. [/mm] Wieso kleiner Alpha?  

--> [mm] (\alpha+\beta) [/mm] > 0 und [mm] (\alpha-\beta) [/mm] > 0. Keine Schwingung.
Weitere Interpretation: Wenn [mm] (\alpha+\beta) [/mm] > 0 und [mm] (\alpha-\beta) [/mm] > 0. Keine Schwingung. Das ist eig. klar.

Es muss also gelten: [mm] a^2/4 -4a^4 [/mm] < 0 und [mm] \wurzel{4a^4} [/mm] < 1.
Mathepower sagte der Ausdruck der Wurzel müsse <0 sein, dass verstehe ich, aber warum [mm] \wurzel{4a^4} [/mm] < 1? Hä?

Somit 1/4 [mm] -4a^4 [/mm] < 0 --> |a| > 1/4 und |a| < [mm] 1/\wurzel{2}. [/mm]
Also 1/4 < a < [mm] 1/\wurzel{2}. [/mm]

Bezug
                        
Bezug
Differenzengleichungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 04.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]