matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferenzengleichung Ordnung k
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differenzengleichung Ordnung k
Differenzengleichung Ordnung k < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differenzengleichung Ordnung k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 Do 03.06.2010
Autor: ledun

Aufgabe
[mm] y_{n+3} [/mm] - [mm] y_{n+2} [/mm] + [mm] 2y_{n} [/mm] = [mm] 50n(-1)^n [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo hier erstmal mein Lösungsweg:

Ermitteln von [mm] z_{n}=z_{n+3} [/mm] - [mm] z_{n+2} [/mm] + [mm] 2z_{n}=0 [/mm] liefert über [mm] \lambda^3 [/mm] - [mm] \lambda^2 [/mm] + 2=0 --> [mm] \lambda_{1}=-1, \lambda_{2}=1+i, \lambda_{3}=1-i [/mm]

polarkoordinaten: [mm] \phi=\bruch{\pi}{4}, r=\wurzel{2} [/mm]

[mm] z_{n}= C_{1}*(-1)^n [/mm] + [mm] C_{2}*(\wurzel{2})^n*cos(\bruch{\pi*n}{4}) [/mm] + [mm] C_{3}*(\wurzel{2})^n*sin(\bruch{\pi*n}{4}) [/mm]

bis hierhin sollte kein fehler sein. ich verzweifel nur beim lösen des eingesetzten ansatzes für die partikulärlösung.

da [mm] r(n)=50*n*(-1)^n [/mm]

ansatz [mm] \overline{y}_{n}=n*(A_{0}+A_{1}n)*(-1)^n [/mm]

wenn ich das einsetze umstelle etc komme ich auf

[mm] A_{1}*(-10n-13)-5*A_{0}=50n [/mm]

was mir keine chance gibt die koeffizienten eindeutig zu bestimmen. ist der fehler vllt schon beim ansatz? dass man [mm] A_{0} [/mm] garnicht mit ins boot nehmen darf? nach meinem ansatz aus der vorlesung sollte allerdings alles so stimmen. kann mir wer helfen? danke!

        
Bezug
Differenzengleichung Ordnung k: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Fr 04.06.2010
Autor: Gonozal_IX

Hiho,

> [mm]A_{1}*(-10n-13)-5*A_{0}=50n[/mm]
>  
> was mir keine chance gibt die koeffizienten eindeutig zu
> bestimmen.

Klar kannst du die Koeffizienten mit nem Koeffizientenvergleich bestimmen:

[mm]A_{1}*(-10n-13)-5*A_{0}=50n \gdw -10A_1n - 13A_1 - 5A_0 = 50n \gdw -10A_1n - (13A_1 + 5A_0) = 50n [/mm]

Heisst jetzt nach Koeffizientenvergleich:

[mm] $-10A_1 [/mm] = 50 $
[mm] $13A_1 [/mm] + [mm] 5A_0 [/mm] = 0$

Also:

[mm] $A_1 [/mm] = -5$
$13*(-5) + [mm] 5A_0 [/mm] = 0 [mm] \gdw A_0 [/mm] = 13$

Da ich nicht weiss, ob es dir weiterhilft mal nur auf teilweise beantwortet :-)

MFG,
Gono.

Bezug
                
Bezug
Differenzengleichung Ordnung k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:22 Fr 04.06.2010
Autor: ledun

ich hatte gerade auch die vermutung mit dem koeffizientenvergleich war mir nur nicht sicher - gut dass du diese ansicht gleich mal unterstützt - damit hat sich meine frage geklärt vielen dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]