matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenDifferentiation / Limesbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Differentiation / Limesbildung
Differentiation / Limesbildung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation / Limesbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 So 09.05.2010
Autor: Igor1

Aufgabe
Sei [mm] f_{n}:[a,b] [/mm] -> [mm] \IR [/mm] , n [mm] \in \IN [/mm] eine Folge von stetig differenzierbaren Funktionen. Angenommen, die Ableitungen [mm] (f'_{n})_{n} [/mm] konvergieren gleichmäßig gegen eine Funktion [mm] f^{***}:[a,b] [/mm] -> [mm] \IR [/mm] und für mindestens
einen Punkt [mm] x_{0} \in [/mm] [a,b] konvergiert die Folge [mm] (f_{n}(x_{0}))_{n}. [/mm]
Zeigen Sie, dass die Folge [mm] (f_{n})_{n} [/mm] im gesamten Intervall [a,b] punktweise konvergiert.

Hallo,
es ist also zu zeigen, dass
für alle x [mm] \in [/mm] [a,b] für alle [mm] \varepsilon [/mm] >0 gibt es ein N [mm] \in \IN, [/mm] so dass
[mm] |f_{n}(x)-f(x)| [/mm] < [mm] \varepsilon [/mm] für alle n [mm] \ge [/mm] N .
Nun ist die Frage , wie man die gleichmäßige Konvergenz der Folge der Ableitungen ,  ihre Grenzfunktion [mm] f^{***} [/mm]  und die Konvergenz von [mm] f_{n}(x_{0}) [/mm] ins Spiel bringt.
Z.B: man kann [mm] |f_{n}(x) [/mm] - f(x) | = [mm] |\integral_{x_{0}}^{x}{f'_{n}(t) dt}+f(x_{0}) [/mm] -f(x) | schreiben.

Jedoch , ich komme hier nicht weiter.

Könnt ihr mir bitte hier paar Tipps geben?

Gruß
Igor


        
Bezug
Differentiation / Limesbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 So 09.05.2010
Autor: steppenhahn

Hallo!


> Sei [mm]f_{n}:[a,b][/mm] -> [mm]\IR[/mm] , n [mm]\in \IN[/mm] eine Folge von stetig
> differenzierbaren Funktionen. Angenommen, die Ableitungen
> [mm](f'_{n})_{n}[/mm] konvergieren gleichmäßig gegen eine Funktion
> [mm]f^{***}:[a,b][/mm] -> [mm]\IR[/mm] und für mindestens
>  einen Punkt [mm]x_{0} \in[/mm] [a,b] konvergiert die Folge
> [mm](f_{n}(x_{0}))_{n}.[/mm]
>  Zeigen Sie, dass die Folge [mm](f_{n})_{n}[/mm] im gesamten
> Intervall [a,b] punktweise konvergiert.
>  Hallo,
>   es ist also zu zeigen, dass
> für alle x [mm]\in[/mm] [a,b] für alle [mm]\varepsilon[/mm] >0 gibt es ein
> N [mm]\in \IN,[/mm] so dass
>  [mm]|f_{n}(x)-f(x)|[/mm] < [mm]\varepsilon[/mm] für alle n [mm]\ge[/mm] N .


>  Nun ist die Frage , wie man die gleichmäßige Konvergenz
> der Folge der Ableitungen ,  ihre Grenzfunktion [mm]f^{***}[/mm]  
> und die Konvergenz von [mm]f_{n}(x_{0})[/mm] ins Spiel bringt.
>  Z.B: man kann [mm]|f_{n}(x)[/mm] - f(x) | =
> [mm]|\integral_{x_{0}}^{x}{f'_{n}(t) dt}+f(x_{0})[/mm] -f(x) |
> schreiben.

Das ist ein sehr guter Ansatz, wie ich finde!
Er führt auch zum Ziel, wenn ihr die notwendigen Sätze habt.

Du brauchst:
1. Satz über die Stabilität der Differentiation (Wenn [mm] (f_{n}) [/mm] stetig differenzierbar und punktweise gegen f konvergiert; und [mm] (f_{n}') [/mm] gleichmäßig gegen [mm] f^{\*} [/mm] konvergiert, dann gilt $f' = [mm] f^{\*}$ [/mm] ) --> Das liefert dir [mm] $f'(x_{0}) [/mm] = [mm] f^{\*}(x_{0})$. [/mm] (D.h. Differentiation und Grenzprozess dürfen vertauscht werden).
2. Wenn [mm] $g_{n}$ [/mm] gleichmäßig gegen $g$ konvergiert, so gilt:

[mm] $\lim_{n\to\infty}\int_{a}^{b}g_{n}(x) [/mm] dx = [mm] \int_{a}^{b}\lim_{n\to\infty}g_{n}(x) [/mm] dx = [mm] \int_{a}^{b}g(x) [/mm] dx$

(D.h. Integration und Grenzprozess dürfen vertauscht werden).

Hast du das zur Verfügung? Wenn ja, hilft es dir weiter?

Grüße,
Stefan

Bezug
                
Bezug
Differentiation / Limesbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 So 09.05.2010
Autor: Igor1

Hallo,

> Du brauchst:
>  1. Satz über die Stabilität der Differentiation (Wenn
> [mm](f_{n})[/mm] stetig differenzierbar und punktweise gegen f
> konvergiert; und [mm](f_{n}')[/mm] gleichmäßig gegen [mm]f^{\*}[/mm]
> konvergiert, dann gilt [mm]f' = f^{\*}[/mm] ) --> Das liefert dir
> [mm]f'(x_{0}) = f^{\*}(x_{0})[/mm]. (D.h. Differentiation und
> Grenzprozess dürfen vertauscht werden).

Ich habe dazu eine Frage:
f'=f* , wenn ... und punktweise gegen f konvergiert.
Momentan wissen wir nicht, ob die punktweise Konvergenz vorliegt.
Wie kann ich es dann verwenden?

Gruß
Igor


>  

>  
> Grüße,
>  Stefan


Bezug
                        
Bezug
Differentiation / Limesbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 09.05.2010
Autor: steppenhahn

Hallo,

> Hallo,
>  
> > Du brauchst:
>  >  1. Satz über die Stabilität der Differentiation (Wenn
> > [mm](f_{n})[/mm] stetig differenzierbar und punktweise gegen f
> > konvergiert; und [mm](f_{n}')[/mm] gleichmäßig gegen [mm]f^{\*}[/mm]
> > konvergiert, dann gilt [mm]f' = f^{\*}[/mm] ) --> Das liefert dir
> > [mm]f'(x_{0}) = f^{\*}(x_{0})[/mm]. (D.h. Differentiation und
> > Grenzprozess dürfen vertauscht werden).
>  
> Ich habe dazu eine Frage:
>  f'=f* , wenn ... und punktweise gegen f konvergiert.
>  Momentan wissen wir nicht, ob die punktweise Konvergenz
> vorliegt.
>  Wie kann ich es dann verwenden?

Wir wissen aber, dass punktweise Konvergenz in [mm] x_{0} [/mm] vorliegt. Deswegen folgern wir auch nur [mm] $f'(x_{0}) [/mm] = [mm] f^{\*}(x_{0})$, [/mm] und nicht mehr.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]