matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferentiation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Differentiation
Differentiation < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiation: Beschränktheit
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 25.04.2016
Autor: anil_prim

Aufgabe
g und f seien stetig differenzierbare, relle Funktionen mit |f'(x)| [mm] \le [/mm] g'(x). Es sei g beschränkt.
Zz.: f ist beschränkt.

Hallo,

da g beschränkt ist, ist auch g'(x) beschränkt und hat demnach höchstens endlich viele Extremstellen und ist monoton steigend bzw fallend.
Wenn g'(x) = 0 gilt |f'(x)| [mm] \le [/mm] g'(0).
Da dies an jeder Stelle der Funktion gilt muss auch |f'(x)| endlich viele Extremstellen besitzen und ist deshalb beschränkt, oder?

Ist das ein sinnvoller Ansatz oder bin ich damit völlig auf dem Holzweg?

LG Anil

        
Bezug
Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 25.04.2016
Autor: fred97


> g und f seien stetig differenzierbare, relle Funktionen mit
> |f'(x)| [mm]\le[/mm] g'(x). Es sei g beschränkt.
> Zz.: f ist beschränkt.
>  Hallo,
>  
> da g beschränkt ist, ist auch g'(x) beschränkt

Wieso ??

>  und hat
> demnach höchstens endlich viele Extremstellen


Das stimmt nicht. Beispiel [mm] \sin(x) [/mm]

> und ist
> monoton steigend bzw fallend.
>  Wenn g'(x) = 0 gilt |f'(x)| [mm]\le[/mm] g'(0).
> Da dies an jeder Stelle der Funktion gilt muss auch |f'(x)|
> endlich viele Extremstellen besitzen und ist deshalb
> beschränkt, oder?

Das ist Murks !

>  
> Ist das ein sinnvoller Ansatz oder bin ich damit völlig
> auf dem Holzweg?
>  
> LG Anil


gehen wir davon aus, dass f und g auf einem Intervall I=[a,b] def. sind.

Dann haben wir nach Vor.:

   -g'(t) [mm] \le [/mm] f'(t) [mm] \le [/mm] g'(t) für alle t [mm] \in [/mm] [a,b]

Es folgt

[mm] $-\integral_{a}^{x}{g'(t) dt} \le \integral_{a}^{x}{f'(t) dt} \le \integral_{a}^{x}{g'(t) dt}$ [/mm] für alle x $ [mm] \in [/mm] $ [a,b] .

Jetzt Du.

FRED

Bezug
                
Bezug
Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mo 25.04.2016
Autor: anil_prim

Kann ich dann sagen, dass die Stammfunktion -g und g ist und diese einen bestimmten Wert annimmt, also nicht unendlich wird, weil sie beschränkt ist?
Somit würde das auch für f gelten.

Bezug
                        
Bezug
Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mo 25.04.2016
Autor: fred97


> Kann ich dann sagen, dass die Stammfunktion -g und g ist
> und diese einen bestimmten Wert annimmt, also nicht
> unendlich wird, weil sie beschränkt ist?
> Somit würde das auch für f gelten.

????

Aus



$ [mm] -\integral_{a}^{x}{g'(t) dt} \le \integral_{a}^{x}{f'(t) dt} \le \integral_{a}^{x}{g'(t) dt} [/mm] $ für alle x $ [mm] \in [/mm] $ [a,b]

folgt doch

   -(g(x)-g(a)) [mm] \le [/mm] f(x)-f(a) [mm] \le [/mm] g(x)-g(a)   für alle x $ [mm] \in [/mm] $ [a,b]


Siehst Du nun, dass f beschränkt ist ?

FRED


Bezug
                                
Bezug
Differentiation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mo 25.04.2016
Autor: anil_prim

Ach ja, jetzt habe ich es verstanden. Vielen Dank für deine Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]