matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Differentialrechnung
Differentialrechnung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Maximum
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 27.11.2010
Autor: blackkilla

Hallo Leute

Warum hat die folgende Funktion kein Maximum?

[mm] p(x)=a+k(1-e^{-cx}) [/mm]


a, k und c sind positive Konstanten.

Es ist ja möglich, dass p(x)<0 wird. Je nachdem wie die Konstanten sind...

Gruss

Blackkilla

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 27.11.2010
Autor: Tyskie84

Hallo,

> Hallo Leute
>  
> Warum hat die folgende Funktion kein Maximum?
>
> [mm]p(x)=a+k(1-e^{-cx})[/mm]
>  
>
> a, k und c sind positive Konstanten.
>  
> Es ist ja möglich, dass p(x)<0 wird. Je nachdem wie die
> Konstanten sind...
>  

Ja das ist möglich aber nicht relevant ob ein Hochpunkt vorliegt.

Schau dir die Funktion [mm] e^{-x} [/mm] an. Wie sieht die aus? Wie sieht [mm] 1-e^{-x} [/mm] aus? Was macht die Konstante im Exponenten?

Was machst die Konstante vor der Klammer? Was macht das additive Glied?

Beachte das dies positive Konstanten sind sodass sich an den Vorzeichen nichts tut.

Durch kannst natürlcih auch rechnerisch nachweisen dass kein Hochpunkt vorliegt.

> Gruss
>  
> Blackkilla

[hut] Gruß

Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Sa 27.11.2010
Autor: blackkilla

Was ist ein Hochpunkt?^^

Also das innerhalb der Klammer kann ja z.B. negativ werden...

Bezug
                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Sa 27.11.2010
Autor: Tyskie84

Hallo,

> Was ist ein Hochpunkt?^^
>  

Hochpunkt=Maximum

> Also das innerhalb der Klammer kann ja z.B. negativ
> werden...

Was bringt dir die Überlegung dass die Klammer negativ werden kann?

Jetzt gib mal hier in eigenen Worten wieder was ein Maximum ist.

[hut] Gruß


Bezug
                                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 27.11.2010
Autor: blackkilla

Erklär dus mir! Ich bin verwirrt. :S



Bezug
                                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Sa 27.11.2010
Autor: Tyskie84

Hallo,

> Erklär dus mir! Ich bin verwirrt. :S
>  

Jetzt komm. Ein bisschen ersnthafter. Du musst doch wissen wie die Definition von Extrempunkten lautet. Wenn du es nicht genau weißt dann schau in deinem Mathebuch nach und wenn du etwas nicht verstehen solltest dann frage hier gezielt nach.

[hut] Gruß


Bezug
                                                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Sa 27.11.2010
Autor: blackkilla

Also wenn c ein Maximalpunkt für  f ist, dann muss es [mm] f(x)\le [/mm] f(c) sein?


So mein Fehler!^^

Bezug
                                                        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Sa 27.11.2010
Autor: Tyskie84

Hallo,

> Also wenn c ein Maximalpunkt für  f ist, dann muss es
> [mm]f(x)\lef(c)[/mm] sein?

Hää?

Schau mal []hier

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]