matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Differentialrechnung
Differentialrechnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: nach x auflösen
Status: (Frage) beantwortet Status 
Datum: 21:38 So 18.07.2010
Autor: macflo

Aufgabe
f(x) = [mm] e^{x}^{2} [/mm]  ableiten, Extrema, Wende-Sattelpunkt bestimmen  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, bin neu hier im Forum und suche nach dem Lösungsweg für eine Aufgabe in der man Extrema(Min/Max) und Wende-/ Sattelpunkte bestimmen soll. Die Ausgangsfunktion ist:
f(x)= [mm] e^{x}^{2} [/mm]

Als erste Ableitung hätte ich

f´(x) = 2x  *  [mm] e^{x}^{2} [/mm]

Als zweite Ableitung hätte ich unter Zuhilfenahme der Produktregel:

f´´(x) = 2   *   [mm] e^{x}^{2} [/mm]   +   2x  *    [mm] e^{x}^{2} [/mm]  *  2x

f´´´(x) = 2  *   [mm] e^{x}^{2} [/mm]  *  2x *  ( 2 [mm] x^{2} [/mm] + 1)   +   2  *  [mm] e^{x}^{2} [/mm] * [mm] (2x^{2} [/mm] + 1)

Zur Bestimmung der Extrema:

f´(x) = 0   =>   2x  *  [mm] e^{x}^{2} [/mm] =0            /  :2x

nach [mm] e^{x}^{2} [/mm]  = 0

und dann fällt mir nicht ein wie ich nach x auflösen kann....vielleicht kann mir jemand helfen...Danke!!

        
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 18.07.2010
Autor: ChopSuey

Moin,

erste und zweite Ableitungen stimmen. Die dritte habe ich nicht überprüft.

>  
> Zur Bestimmung der Extrema:
>  
> f´(x) = 0   =>   2x  *  [mm]e^{x}^{2}[/mm] =0            /  :2x

>  
> nach [mm]e^{x}^{2}[/mm]  = 0

Nein. Ein Produkt wird dann Null, wenn min. einer seiner Faktoren Null wird.
Wenn du durch $\ 2x$ teilst, gehen mögliche Lösungen der Gleichung verloren.

Erste Nullstelle sieht man sofort: $ [mm] x_1 [/mm] = 0 $

Nun bleibt $\ [mm] e^{2x} [/mm] = 0 $

Die Gleichung hat keine Lösung. Mach dir klar, warum.

>  
> und dann fällt mir nicht ein wie ich nach x auflösen
> kann....vielleicht kann mir jemand helfen...Danke!!  

Viele Grüße
ChopSuey


Bezug
                
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 So 18.07.2010
Autor: macflo

Hammer Reaktionszeit....ich hätte morgen mit einer Antwort gerechnet...
Danke erstmal.
Erstes hab ich verstanden... "mach dir klar, warum" werde ich noch überdenken und bin vielleicht über einen Denkanstoß dankbar...vielleicht weil e°  = 1 und alle anderen [mm] e^x [/mm] immer ungleich null???

Thanx erstmal....

Bezug
                        
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 So 18.07.2010
Autor: ChopSuey

Moin,

> Hammer Reaktionszeit....ich hätte morgen mit einer Antwort
> gerechnet...
>  Danke erstmal.
>  Erstes hab ich verstanden... "mach dir klar, warum" werde
> ich noch überdenken und bin vielleicht über einen
> Denkanstoß dankbar...vielleicht weil e°  = 1 und alle
> anderen [mm]e^x[/mm] immer ungleich null???

Ja, richtig.

Es gilt $\ [mm] e^{-x} [/mm] = [mm] \frac{1}{e^x} [/mm] $ und das kann nicht Null werden.

>  
> Thanx erstmal....

Grüße
ChopSuey


Bezug
        
Bezug
Differentialrechnung: leicht Abänderung
Status: (Frage) beantwortet Status 
Datum: 22:14 So 18.07.2010
Autor: macflo

Aufgabe
f(x)= [mm] x*e^{x} [/mm]

Hallo, eine hätte ich noch...

f(x)= [mm] xe^{x} [/mm]

kann hier das x als Konstante betrachtet werden oder muss ich beim Ableiten die Produktregel anwenden...Nochmals Danke im Voraus!!

An ChopSuey:Danke für die schnelle Hilfe... den Rest hatte ich unter Mitteilung gepostet...

Bezug
                
Bezug
Differentialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 So 18.07.2010
Autor: ChopSuey

Hi macflo,

> f(x)= [mm]x*e^{x}[/mm]
>  Hallo, eine hätte ich noch...
>  
> f(x)= [mm]xe^{x}[/mm]
>  
> kann hier das x als Konstante betrachtet werden oder muss
> ich beim Ableiten die Produktregel anwenden...Nochmals
> Danke im Voraus!!

Hier brauchst du die Produktregel. Da $\ x $ die Variable/Unbestimmte ist, nach der Abgeleitet werden soll.

Eine Hilfe um herauszufinden, wonach abgeleitet werden soll, ist das Argument der Funktion. Also $\ [mm] f(\red{x}) [/mm] $.

>  
> An ChopSuey:Danke für die schnelle Hilfe... den Rest hatte
> ich unter Mitteilung gepostet...

Gern!
Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]