matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferentialrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Differentialrechnung
Differentialrechnung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mo 19.06.2006
Autor: HS86

Aufgabe
Sei  f (x , y) = 4 + 3x - 7y + [mm] x^4 [/mm] * y +  [mm] \bruch{1}{x +y} [/mm]
Berechnen Sie   [mm] \bruch{ \partial f}{ \partial x } [/mm] (x,y) und     [mm] \bruch{ \partial f}{ \partial y } [/mm] (x,y)

Hallo,

ist...

[mm] \bruch{ \partial f}{ \partial x } [/mm] = 3x + [mm] x^4 [/mm] * y +  [mm] \bruch{1}{x} [/mm] = 3 + 4 [mm] x^3 [/mm] * y

und

[mm] \bruch{ \partial f}{ \partial y } [/mm]  = [mm] x^4 [/mm] * y - 7y +  [mm] \bruch{1}{y} [/mm] = [mm] x^4 [/mm] * y - 7

???

Ich glaub leider, dass das falsch ist... Kann jemand bitte helfen???

MfG

        
Bezug
Differentialrechnung: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:38 Mo 19.06.2006
Autor: Roadrunner

Hallo HS86!


Wie von Dir vermutet, stimmen diese partiellen Ableitungen nicht. Du musst bei der Ableitung nach der Variablen $x_$ die andere Variable $y_$ wie eine Konstante behandeln:

$f (x , y) \ = \ 4 + 3x - 7y [mm] +x^4 [/mm] * y + [mm] \bruch{1}{x +y} [/mm] \ = \ [mm] 4+3x-7y+y*x^4+(x+y)^{-1}$ [/mm]


Damit wird dann [mm] $f_x(x,y) [/mm] \ = \ [mm] \bruch{\partial f}{\partial x}(x,y)$ [/mm] :

[mm] $f_x(x,y) [/mm] \ = \ [mm] \bruch{\partial f}{\partial x}(x,y) [/mm] \ = \ [mm] 0+3-0+y*4x^3+(-1)*(x+y)^{-2}*1 [/mm] \ = \ [mm] 3+4x^3*y-\bruch{1}{(x+y)^2}$ [/mm]


Schaffst Du nun [mm] $f_y(x,y) [/mm] \ = \ [mm] \bruch{\partial f}{\partial y}(x,y)$ [/mm] selber? Wie lautet Dein Ergebnis?


Gruß vom
Roadrunner


Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 19.06.2006
Autor: HS86

f(x) (x,y)  = [mm] \bruch{\partial f}{\partial y}(x,y) [/mm]  =  0+3 * 0 - 7 y + y * [mm] x^4 [/mm] + (x+y)^(-1) = -7 + [mm] x^4 [/mm] + (-1) * (x+y)^-2 * 1 =
= -7 + [mm] x^4 [/mm] - [mm] \bruch{1}{(x+y)^2} [/mm]

Ist es nun richtig??

MfG

Bezug
                        
Bezug
Differentialrechnung: Endergebnis richtig
Status: (Antwort) fertig Status 
Datum: 15:49 Mo 19.06.2006
Autor: Roadrunner

Hallo HS86!


Dein Endergebnis ist richtig. [ok]

In der Darstellung der Zwischenschritte musst Du aufpassen, da mixt Du die partielle Ableitung mit Elementen der eigentlichen Funktionsvorschrift.


Gruß vom
Roadrunner


Bezug
                        
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mo 10.07.2006
Autor: HS86

Nabend...

>  f(x) (x,y)  = [mm]\bruch{\partial f}{\partial y}(x,y)[/mm]  =  0+3 * 0 - 7 y + y * [mm]x^4[/mm] + (x+y)^(-1) = -7 + [mm]x^4[/mm] + (-1) *
> (x+y)^-2 * 1 =

> = -7 + [mm]x^4[/mm] - [mm]\bruch{1}{(x+y)^2}[/mm]
>

Muss man hier eigentlich noch weiter rechnen, wenn in der Aufgabe gefordert wird "Berechnen Sie [mm]\bruch{\partial f}{\partial y}(x,y)[/mm]" ??

Oder ist die Form -7 + [mm]x^4[/mm] - [mm]\bruch{1}{(x+y)^2}[/mm] schon das Endergebnis??

MfG

Bezug
                                
Bezug
Differentialrechnung: fertig!
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 10.07.2006
Autor: Roadrunner

Hallo HS86!


Nach meiner Auffasung bist Du nun fertig! Wenn Du aber unbedingt magst, kannst Du hier noch alles auf einen Bruchstrich schreiben, was allerdings weitere Ableitungen unnötig verkomplizieren würde ...


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Differentialrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Mo 10.07.2006
Autor: HS86

Ok, danke... wollt einfach nur noch mal nachfragen... hab nämlich morgen meine Mathe-Klausur...

MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]