matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Differentialrechnung
Differentialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialrechnung: Hilfe bei Hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 08.05.2006
Autor: Waltraud

Hallo Leute, brauche dringend eure Hilfe!! Aufgabe lauten:

Aufgabe 1
Betrachten Sie die Funktion f:X --> 1 + x/1 + x²/2 + .... x hoch n/n.
a) Bilden sie die ersten drei Ableitungsfunktionen.
b) Stellen die nun eine Vermutung auf für die n-te Ableitungsfunktion. (n-Fakultät)


Aufgabe 2
Finden  und beweisen sie eine Formel für die erste Ableitungsfunktion der Produkfunktion f = u * v * w, also für eine Funktion, die aus 3 Faktoren aufgebaut ist.
Anleitung: Das Ergebnis finden sie, indem sie geschickt Klammern setzen und die Ihnen bekannte Produktregel für zwei Faktoren mehrfach anwenden.

Hallo Leute, ich stehe mal wieder total auf dem Schlauch. Die anderen Aufgaben in meinem Heft habe ich ja alle verstanden, aber hier verlässt mich leider mein Kopf. Ich bitte dringend um Hilfe.

Vielen lieben Dank

Waltraud

        
Bezug
Differentialrechnung: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 08.05.2006
Autor: Roadrunner

Hallo Waltraud!


Wie lautet denn die MBProduktregel für zwei Faktoren?

$(u*v)' \ = \ u'*v+u*v'$


Und nun folgen wir einfach mal dem Tipp der Aufgabenstellung:

$(u*v*w)' \ = \ [(u*v)*w]' \ = \ (u*v)'*w+(u*v)*w'$


Einsetzen des Terms von $(u*v)'_$ (siehe oben) in diese Gleichung liefert die gewünschte Formel ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Differentialrechnung: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 14:39 Mo 08.05.2006
Autor: Roadrunner

Hallo Waltraud!


Hast Du denn mal die erste Ableitung $f'(x)_$ gebildet? Wie sieht diese denn aus? Wieviele Summanden verbleiben denn von den anfänglichen $n+1_$ Summanden der Funktionsvorschrift.

Wenn Du diese Funktion nun abgeleitet hast, dies einfach nochmals ableiten ... spätestens mit der 3. Ableitung ist da bestimmt das System zu erkennen.


Aber beginnen wir zunächst mit der ersten Ableitung ;-) ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Differentialrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Mo 08.05.2006
Autor: Waltraud

Hallo Roadrunner! Danke schon mal für deine Hilfe.

Ich habe allerdings noch eine Frage.

Und zwar gehts um Aufgabe 1!

Ich habe da als erste Ableitung:

f': x --> 1 + x/ 1*1 + x²/ 2*1
f'' : x ---> 1 + x/1*1 + x²/2*1 + x³/3*1
f''' : x --> 1 + x/1*1 + x²/2*1 + x³/3*1 + x hoch 4/ 4*1

Ich weiß nicht ob das richtig ist. Wenn ja müßte für die Ableitungsfunktion der n-ten Ableitung lauten:

f (n) : x ---> 1 + x hoch n+1/ n*1

Kannst du mir da vielleicht noch mal helfen?

Vielen Dank und ganz liebe Grüße Waltraud

Bezug
                        
Bezug
Differentialrechnung: Aufg.1 Forts.
Status: (Antwort) fertig Status 
Datum: 17:33 Mo 08.05.2006
Autor: informix

Hallo Waltraud,

f:X --> 1 + x/1 + x²/2 + .... x hoch n/n
du meinst: [mm] $f_n(x) [/mm] = 1 + [mm] \bruch{x}{1} [/mm] + [mm] \bruch{x^2}{2} [/mm] + [mm] \bruch{x^3}{3}... [/mm] + [mm] \bruch{x^n}{n}$ [/mm] ?

>  
> Ich habe da als erste Ableitung:
>  
> f': x --> 1 + x/ 1*1 + x²/ 2*1

Wo sind denn die restlichen Summanden der (langen) Summe geblieben?!
du solltest schon alle Summanden ableiten:
[mm] $f_n' [/mm] (x) = 1+ x [mm] +x^2 [/mm] + [mm] x^3... +x^{n-1}$ [/mm]
analog geht's mit der nächsten Ableitung weiter.

>  f'' : x ---> 1 + x/1*1 + x²/2*1 + x³/3*1

>  f''' : x --> 1 + x/1*1 + x²/2*1 + x³/3*1 + x hoch 4/ 4*1

>  
> Ich weiß nicht ob das richtig ist. Wenn ja müßte für die
> Ableitungsfunktion der n-ten Ableitung lauten:
>  
> f (n) : x ---> 1 + x hoch n+1/ n*1 [notok]

Versuchs mal allein weiter!

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]