matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenDifferentialoperatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Differentialoperatoren
Differentialoperatoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialoperatoren: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:28 Mo 13.06.2011
Autor: Student89

Aufgabe
Gegeben seien die Funktion u: [mm] R^3 [/mm] nach R
                       u(x,y,z) = xy+xz+yz

sowie die Vektorfelder v,w: [mm] R^3 [/mm] nach [mm] R^3 [/mm]

v(x,y,z) = [mm] \begin{pmatrix} y^2 \\ 3 \\ 2yx \end{pmatrix} [/mm]

w(x,y,z) = [mm] \begin{pmatrix} y-z \\ z-x\\ x-y \end{pmatrix} [/mm]

Berechnen Sie
a) rot grad (w*v)
b) rot rot v

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mo 13.06.2011
Autor: kamaleonti

Hallo Student89,
      [willkommenmr]!

> Gegeben seien die Funktion u: [mm]R^3[/mm] nach R
>                         u(x,y,z) = xy+xz+yz
>  
> sowie die Vektorfelder v,w: [mm]R^3[/mm] nach [mm]R^3[/mm]
>  
> v(x,y,z) = [mm]\begin{pmatrix} y^2 \\ 3 \\ 2yx \end{pmatrix}[/mm]
>  
> w(x,y,z) = [mm]\begin{pmatrix} y-z \\ z-x\\ x-y \end{pmatrix}[/mm]
>  
> Berechnen Sie
> a) rot grad (w*v)
>  b) rot rot v

Hier ist es üblich, dass Fragensteller eigene Ansätze posten. Du solltest zumindest die Definition von rot und grad kennen und hinschreiben.
Wenn nicht, habe ich hier auf die schnelle diesen []Link gefunden. Dort steht schonmal das Wichtigste.

Wenn du irgendwo hängen bleibst, kannst du eine neue Frage stellen.

LG


Bezug
                
Bezug
Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 13.06.2011
Autor: Student89

Danke.Wenn ich rot rot v berechnen soll, berechne ich erst rot v dann das Ergebnis nochmal mit rot. Ist das so richtig?
Bei rot grad (w*v) verwirrt mich das w*v. Ist rot grad (w*v) = rot v grad(w)?

Gruß

Bezug
                        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 13.06.2011
Autor: kamaleonti


> Danke.Wenn ich rot rot v berechnen soll, berechne ich erst
> rot v dann das Ergebnis nochmal mit rot. Ist das so
> richtig?

[ok]

>  Bei rot grad (w*v) verwirrt mich das w*v. Ist rot grad
> (w*v) = rot v grad(w)?

Nein. Was soll denn grad(w) sein? [mm] w:\IR^3\to\IR^3 [/mm] ist ein Vektorfeld, aber der Gradient ist für ein Skalarfeld (d.h. etwa eine Funktion von [mm] \IR^3\to\IR) [/mm] definiert.

Ich vermute eher mit w*v ist das (Standard-)Skalarprodukt von w und v gemeint.


LG

Bezug
                                
Bezug
Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Mo 13.06.2011
Autor: Student89

Bist du dir sicher? Dann nehme ich das Standardskalarprodukt von w und v. Den Gradienten vom Ergebnis.Rot vom nächsten Ergebnis. Ist das so richtig?

Bezug
                                        
Bezug
Differentialoperatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Mo 13.06.2011
Autor: Student89

So ich habe für
rot grad (w*v) = [mm] \begin{pmatrix} 0 \\ 0\\ 0 \end{pmatrix} [/mm]
und
rot rot v = [mm] \begin{pmatrix} -2 \\ 0\\ 0 \end{pmatrix} [/mm]

Könnt ihr bitte überprüfen, ob die Ergebnisse richtig sind.

Bezug
                                                
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 13.06.2011
Autor: MathePower

Hallo Student89,

> So ich habe für
> rot grad (w*v) = [mm]\begin{pmatrix} 0 \\ 0\\ 0 \end{pmatrix}[/mm]
>  
> und
>   rot rot v = [mm]\begin{pmatrix} -2 \\ 0\\ 0 \end{pmatrix}[/mm]
>  
> Könnt ihr bitte überprüfen, ob die Ergebnisse richtig
> sind.


Die Ergebnisse sind richtig. [ok]


Gruss
MathePower

Bezug
                                        
Bezug
Differentialoperatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 13.06.2011
Autor: MathePower

Hallo Student89,



> Bist du dir sicher? Dann nehme ich das
> Standardskalarprodukt von w und v. Den Gradienten vom
> Ergebnis.Rot vom nächsten Ergebnis. Ist das so richtig?


Ja, das ist so richtig.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]