matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen lösen
Differentialgleichungen lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen lösen: ein paar Fragen
Status: (Frage) beantwortet Status 
Datum: 17:56 Fr 16.07.2010
Autor: keying

Hallo ihr Lieben!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich bin neu im im Matheraum und muss meinen Einstieg leider mit einer wichtigen Frage starten, da ich zur Zeit sehr verwirrt bin von verschiedenen Methoden zur Berechnung von Differentialgleichungen.
Ich fang dann mal an:
1. wie löst man eine Dgl mit doppelten Nullstellen
2. wie  löst man eine Dgl mit komplexen Eigenwerten
3. in wie weit unterscheidet sich der Lösungsweg von y'=Ay mit A diagonalisierbar und A nicht diagonalisierbar?
4. Wann braucht man genau die e-Funktion?

Wir haben eine Lösungsformel angegeben:

[mm] y(x)=C_1*e^{lambda_1*t}*v_1+... [/mm]

Nur ist mir nicht ganz klar inwiefern sich diese bei komplexen, doppelten etc Eigenwerten verändert.

Ich habe zwei Lösungswege. Mit dem einen komme ich auf die obige Gleichung, aber auch nur, wenn die EWe nicht doppelt etc sind. Und zwar:
1. EWe berechnen.
2. EVen berechnen und in Gleichung einsetzen.
3. Falls AWP vorhanden auch die Konstanten [mm] C_i [/mm] berechen.

Die zweite Lösungsmethode habe ich einem Buch gefunden. Ich weiß aber nicht genau, ob sie für alle Fälle gilt:
1. die berechneten EWe in die allgemeine Form [mm] y_1=C_1*e^{lambda_1*x}+C_2*e^{lambda_2*x} [/mm] einsetzen (hier zu einer 2x2-Matrix)
2. [mm] y_1 [/mm] ableiten und in die Gleichung [mm] y_2=1/a_1_2*(y'_1-a_1_1 *y_1) [/mm] einsetzen.
Ich weiß auch wie ich auf die Gleichung komme, aber darum gehts ja auch nicht.

Ich wäre um jede Hilfe dankbar, durch die ich meine Gedanken sortieren kann :)

Danke schonmal, keying


        
Bezug
Differentialgleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 20.07.2010
Autor: wieschoo

Hi,
[willkommenmr]

dein Ansatz war $ [mm] y(x)=C_1\cdot{}e^{\lambda_1\cdot{}t}\cdot{}v_1+... [/mm] $

> wie löst man eine Dgl mit doppelten Nullstellen

Ansatz für doppelte Nullstelle [mm] \lambda_1 [/mm]
$ [mm] y(x)=(C_1 +t\cdot C_2)\cdot{}e^{\lambda_1\cdot{}t}+... [/mm] $

> wie  löst man eine Dgl mit komplexen Eigenwerten

Eigenwert=Nullstelle
Sei [mm] \lambda_1 [/mm] eine komplexe Nullstelle ds rellen Polynoms, dann ist auch ihre Konjugierte [mm] $\overline{\lambda_1}=\lambda_2$ [/mm] eine Nullstelle
$ [mm] y(x)=C_1\cdot{}e^{\lambda_1\cdot{}t}+ C_2\cdot{}e^{\lambda_2\cdot{}t}... [/mm] $

> in wie weit unterscheidet sich der Lösungsweg von y'=Ay mit A diagonalisierbar und A nicht diagonalisierbar?

siehe https://matheraum.de/read?t=701830

> Wann braucht man genau die e-Funktion?

Bei linearen DLG setzt man eigentlich [mm] $e^A$ [/mm] an wobei [mm] $A\in\IR^{n\times n}$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]