matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichungen
Differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Wasserkaskade
Status: (Frage) beantwortet Status 
Datum: 08:58 Mo 30.05.2011
Autor: tkler

Aufgabe 1
4 Wasserbecken sind so angeordnet, dass die Abflüsse vom ersten ins zweite, vom zweiten ins dritte und vom dritten ins vierte laufen. Der Abfluss aus einem Becken ist proportional zu seinem Inhalt (konstante Abflussrate)
b1: Ablussrate Becken 1
n1(t): Inhalt von Becken 1 zum Zeitpunkt t
...

Stellen Sie die gewöhnlichen Differentialgleichungen auf, sodass die Wassermengen im Zeitverlaub beobachtet werden können.

Aufgabe 2
Es wird eine Pumpe eingebaut, das das Wasser von Becken 4 nach Becken 1 mit einer Rate von b4 pumpt

Stimmen folgende Gleichungen für den Ansatz ohne Pumpe?

erstes Becken:
b1*n1(t) + n1'(t) = 0

zweites Becken:
b2*n2(t) + n2'(t) + n1'(t) = 0

drittes Becken:
b3*n3(t) + n3'(t) + n1'(t) + n2'(t) = 0

viertes Becken:
n4(t) + n1'(t) + n2'(t) + n3'(t) = 0


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 30.05.2011
Autor: reverend

Hallo tkler,

ich verstehe nicht, wie Du auf Deinen Ansatz kommst. Zu unterscheiden sind ja der Beckeninhalt, die Abflussmenge und die Abflussrate.

> 4 Wasserbecken sind so angeordnet, dass die Abflüsse vom
> ersten ins zweite, vom zweiten ins dritte und vom dritten
> ins vierte laufen. Der Abfluss aus einem Becken ist
> proportional zu seinem Inhalt (konstante Abflussrate)
>  b1: Ablussrate Becken 1
>  n1(t): Inhalt von Becken 1 zum Zeitpunkt t
>  ...
>  
> Stellen Sie die gewöhnlichen Differentialgleichungen auf,
> sodass die Wassermengen im Zeitverlaub beobachtet werden
> können.
>  Es wird eine Pumpe eingebaut, das das Wasser von Becken 4
> nach Becken 1 mit einer Rate von b4 pumpt

>
>

>  Stimmen folgende Gleichungen für den Ansatz ohne Pumpe?
>  
> erstes Becken:
>  b1*n1(t) + n1'(t) = 0

Ja, das ist soweit ok. Die Abflussrate wird als negativ angenommen (was der Anschauung entspricht) und ist proportional zum Beckeninhalt.

> zweites Becken:
>  b2*n2(t) + n2'(t) + n1'(t) = 0

Hm. Das verstehe ich eben nicht. Hier haben wir den Beckeninhalt von Becken 2. Aus dem ersten Becken läuft [mm] b_1*n_1(t) [/mm] Wasser zu.

Also: [mm] b_2*(n_2(t)+b_1*n_1(t))+n_2'(t)=0 [/mm]

Wenn ich die erste DGl. einsetze, kann ich das auch so schreiben:

[mm] b_2*(n_2(t)-n_1'(t))+n_2'(t)=b_2*n_2(t)-\blue{b_2*}n_1'(t)+n_2'(t)=0 [/mm]

Und so geht es dann bei den weiteren DGl. auch.

> drittes Becken:
>  b3*n3(t) + n3'(t) + n1'(t) + n2'(t) = 0
>  
> viertes Becken:
>  n4(t) + n1'(t) + n2'(t) + n3'(t) = 0

Grüße
reverend


Bezug
                
Bezug
Differentialgleichungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 So 05.06.2011
Autor: tkler

DAnke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]