matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikDifferentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Elektrotechnik" - Differentialgleichungen
Differentialgleichungen < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 15:25 Mo 26.07.2010
Autor: Xnyzer

Aufgabe
Stellen Sie die DGL für den Strom [mm] i_{L} [/mm] auf. Bestimmen Sie die Zeitkonstante Teta.


[]Link zur Schaltung

Mir ist bekannt, dass ich zum Aufstellen der DGL KS und MS aufstellen muss und diese dann geschickt umformen.
Leider komme ich schon beim Ansatz nicht weiter.
Ich habe aufgestellt:

KS: i = [mm] i_{R2} [/mm] + [mm] i_{L} [/mm] = [mm] \bruch{u_{R2}}{R_{2}} [/mm] + [mm] i_{L} [/mm]
MS: u = [mm] U_{R1} [/mm] + [mm] u_{l} [/mm] = [mm] R_{1} [/mm] * i + L [mm] \bruch{di_{L}}{dt} [/mm]

Sind MS und KS richtig?
Wie muss ich jetzt weiter vorgehen?

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Differentialgleichungen: Datei defekt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Mo 26.07.2010
Autor: Infinit

Hallo xnyzer,
Deine Datei kann leider nicht angezeigt werden.
Viele Grüße,
Infinit

Bezug
        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 26.07.2010
Autor: qsxqsx

Hallo,


Also: Oberstes Ziel ist, dass du eine Gleichung nur noch mit [mm] I_{L} [/mm] hast und ansonsten alle passiven Spannungen und Ströme darüber ausgedrückt werden. Das [mm] U_{o} [/mm] bleibt, ist ja quasie der Partikuläre Teil der DGL.

[mm] U_{0} [/mm] = [mm] I*R_{1} [/mm] + [mm] L*\bruch{d I_{L}}{dt}, [/mm] ja. Mit I = [mm] I_{R} [/mm] + [mm] I_{L} [/mm]

Jetzt aber noch [mm] I_{R} [/mm] in [mm] I_{L} [/mm] ausdrückn.

==> [mm] I_{R}*R_{2} [/mm] = [mm] L*\bruch{d I_{L}}{dt} [/mm]
==> ...

Die Zeitkonstante entspricht dem Koeffizienten in der E-Funktion der Lösung.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]