matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDifferentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Differentialgleichungen
Differentialgleichungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Problem(Frage)
Status: (Frage) beantwortet Status 
Datum: 12:40 So 15.07.2007
Autor: whilo

Aufgabe
Lösen Sie folgendes AWP:

Hallo,


komme mit der Lösung, welche ich für diese vorbereitende Aufgabe in Händen halte, nicht klar. Welcher Gesetzmäßigkeit liegt y´(x)...x´(y) zugrunde?? ( es ist angeführt,dass es sich um den Spezialfall 2 handele - bei uns lineare dgl n-ter ordnung mit konst Koeff., denke ich) . Kann mir jemand die Vorgehensweise bzw den Hintergrund detailliert schildern und ggf einen Weblink anfügen? ... Dank und Gruß

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 So 15.07.2007
Autor: Event_Horizon

Hallo!

Eine Steigung ist doch $m= [mm] \frac{\Delta y}{\Delta x}$. [/mm] Als Ableitung schreibt man daher auch [mm] $y'=\frac{dy}{dx}$. [/mm] Und wenn man davon den Kehrwert bildet, ergibt das [mm] $\frac{dx}{dy}$ [/mm] , und das ist $x'$.

Vielleicht solltest du das auch eher mal mit dieser Bruchschreibweise angehen, das ist übersichtlicher:

[mm] \frac{dy}{dx}=2\wurzel{1-y^2} [/mm]

[mm] \frac{dx}{dy}=\frac{1}{2\wurzel{1-y^2}} [/mm]

Und jetz der Trick:

[mm] $dx=\frac{1}{2\wurzel{1-y^2}}dy$ [/mm]

Das beschreibt nun immernoch ein infinitesimal kleines Stück der Funktion. Um die ganze Funktion zu bekommen, integriert man das ganze, also

[mm] $\integral dx=\integral\frac{1}{2\wurzel{1-y^2}}dy$ [/mm]  (Integrationskonstanten hier nicht vergessen!)

und löst es nach y(x) auf. Das AWP ist dann kein Problem mehr, man muß nun die Konstante C noch so bestimmen, daß die Anfangswertbedingung erfüllt ist.


Dieses Verfahren nennt sich übrigens "Separationsmethode" oder "Separation der Variablen" Unter dem Stichwort findest du sicher was.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]