matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferentialgleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Differentialgleichungen
Differentialgleichungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichungen: Analysis
Status: (Frage) beantwortet Status 
Datum: 05:59 Di 26.07.2016
Autor: Jura86

Aufgabe
Die erste und die zweite Ableitung bilden


Hallo alle zusammen!
Nach langem hin und her rechnen komme ich nicht auf das richtige Ergebnis.
Das ist die Ausgabe die uns gegeben wurde:
[mm] \frac{1}{\left(1-x^4\right)^{4} } [/mm]

Das sind meine Schritte die ich gemacht habe :

Erste Ableitung gebildet :
[mm] \frac{16x^3}{\left(1-x^4\right)^{5} } [/mm]

Versucht mit der Quotientenregel weiter zu machen:
v = [mm] \left(1-x^4\right) [/mm] ^{5}  
v´= [mm] -20x^3 \left(1+x^4\right) [/mm] ^{4}

[mm] u=16x^3 [/mm]
[mm] u´=48x^2 [/mm]

In die Formel eingesetzt:
[mm] \frac{\left(48x^2\cdot \left(1-x^4\right) ^{5}\right)- \left(16x^3\cdot \left(-20x^3\cdot \left(1-x^4\right) ^{4}\right) \right) }{v^2} [/mm]

Wenn ich jetzt weiter alles ausrechne, befürchte ich dass es eine sehr lange Rechnerei sein wird und ich nicht zum  Ergebnis komme.

Wie komme ich am einfachsten auf das Endergebnis ?

        
Bezug
Differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Di 26.07.2016
Autor: abakus


> Die erste und die zweite Ableitung bilden
>  Hallo alle zusammen!
>  Nach langem hin und her rechnen komme ich nicht auf das
> richtige Ergebnis.
>  Das ist die Ausgabe die uns gegeben wurde:
>  [mm]\frac{1}{\left(1-x^4\right)^{4} }[/mm]
>
> Das sind meine Schritte die ich gemacht habe :
>  
> Erste Ableitung gebildet :
>  [mm]\frac{16x^3}{\left(1-x^4\right)^{5} }[/mm]
>
> Versucht mit der Quotientenregel weiter zu machen:
>  v = [mm]\left(1-x^4\right)[/mm] ^{5}  
> v´= [mm]-20x^3 \left(1+x^4\right)[/mm] ^{4}
>  
> [mm]u=16x^3[/mm]
>  [mm]u´=48x^2[/mm]
>  
> In die Formel eingesetzt:
>  [mm]\frac{\left(48x^2\cdot \left(1-x^4\right) ^{5}\right)- \left(16x^3\cdot \left(-20x^3\cdot \left(1-x^4\right) ^{4}\right) \right) }{v^2}[/mm]
>  
> Wenn ich jetzt weiter alles ausrechne, befürchte ich dass
> es eine sehr lange Rechnerei sein wird und ich nicht zum  
> Ergebnis komme.

Wieso? Der Nenner v² wird zu [mm] $(1-x^4)^{10}$, [/mm] und im Zähler kann [mm] $(1-x^4)^4$ [/mm] ausgeklammert werden. Nun kürze.

>  
> Wie komme ich am einfachsten auf das Endergebnis ?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]