matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung mit Stör
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung mit Stör
Differentialgleichung mit Stör < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung mit Stör: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 04.07.2007
Autor: bayerischbeer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt,

Hi,

also ich habe folgende aufgabe:

y´ + [mm] \bruch{y}{x+1} [/mm] -x -1 = 0 AnfBed.: Y(0) = 1

im Papula Seite 264 (9. auflage) ist ein Beispiel mit "Variation der kosntanten"
was so aussieht: y´- [mm] \bruch{y}{x} [/mm] = [mm] x^{2} [/mm]  das versteh ich auch, aber wie würd das dann lösbar sein wenn es (wie in meinem fall) y´+ [mm] \bruch{y}{x} [/mm] = [mm] x^{2} [/mm] lautet?

Gruß Harry

        
Bezug
Differentialgleichung mit Stör: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 04.07.2007
Autor: wauwau

Du löst zuerst die Homogene DGL

[mm] y'=-\bruch{y}{x+1} [/mm]

und erhältst als Lösung

y= [mm] \bruch{A}{x+1} [/mm]  mit einer konst. A
jetzt setzt du mit A(x) als Funktion in die DGL ein

und erhälts

A' = [mm] 1-x^2 [/mm]

daraus A

[mm] A=x-\bruch{x^3}{3}+C [/mm] mit einer konst. C

u.s.w

Bezug
                
Bezug
Differentialgleichung mit Stör: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 14:55 Mi 04.07.2007
Autor: bayerischbeer

HI, vielen Dank, hast mir sehr weiter geholfen!

Dennoch glaub ich dass sich ein kleiner fehler eingeschlichen hat:
A´(x) müsste [mm] (x+1)^2 [/mm] sein und nicht [mm] 1-x^2 [/mm]
Daraus ergibt sich dann A(x)=1/3 [mm] (x+1)^3 [/mm] + C
Oder lieg ICH da falsch?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]