matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung I Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung I Grades
Differentialgleichung I Grades < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung I Grades: Ich kapier das nicht
Status: (Frage) beantwortet Status 
Datum: 10:45 Sa 01.07.2006
Autor: MatheNoop

Aufgabe
Aufgabe 1.)
[mm] y'-xy=e^x², [/mm] y(0)=2

Aufgabe 2.)
[mm] y'-3xy=7e^x², [/mm] y(1)=3

Aufgabenstellung gilt für beide:
y'+f(x)y=g(x)
y(x0)=y0

Kann mir bitte jemand in einzelnen nachvollziebaren Schritten erklären wie ich diese gleichungen lösen soll.

vielen Dank im voraus

Ps  Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

        
Bezug
Differentialgleichung I Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Sa 01.07.2006
Autor: stevarino

Hallo

Das ist eigentlich ganz einfach die Differentialgleichungen haben die Form
y´+f(x)y=g(x)
wobei g(x) das Störglied ist  es hängt nur von x ab

jetzt löst man zunächst die homogen Diffgl.
y´+f(x)y=0 jetzt wendet man Trennung der Variablen an
y´=f(x)y
[mm] \bruch{y^{/}}{y}=f(x) [/mm] jetzt kannst du ja für y´ auch  [mm] \bruch{dy}{dx} [/mm] schreiben
[mm] \bruch{1}{y}* \bruch{dy}{dx}=f(x) [/mm] jetzt umformen
[mm] \bruch{1}{y} [/mm] dy=f(x) dx  integrieren
[mm] \integral_{}^{}{\bruch{1}{y} dy}= \integral_{}^{}{f(x) dx} [/mm]
[mm] ln(y)=\integral_{}^{}{f(x) dx} [/mm]
[mm] y=e^{\integral_{}^{}{f(x) dx}} *e^{K} [/mm]  K... Integrationskonstante
jetzt setzt man noch [mm] e^{K}=C [/mm]

und kommt auf die homogene Lösung [mm] y_{H}=e^{\integral_{}^{}{f(x) dx}}*C [/mm]

jetzt berechnet man die Partikuläre Lösung mit Variation der Konstanten
[mm] y=e^{\integral_{}^{}{f(x) dx}} [/mm] *C(x) die wird jetzt  einmal differenziert bei y´´ zweimal usw.
[mm] y^{/} =...*C(x)+e^{\integral_{}^{}{f(x) dx}}*C^{/}(x) [/mm] (Produktregel weil C von x abhängt )
das wird jetzt in die Angabe(jetzt mit Störglied) eingesetzt wenn man alles richtig gemacht hat fallen die Summanden mit C(x) weg und ma kann sich durch Integrieren  von C´(x) das C berechnen. Jetzt bist du schon fast fertig du mußt dir noch die  Anfangsbedingungen in C einsetzten
Die Lösung ist y= [mm] y_{H}+y_{Part} [/mm]

Ich hoffeich konnte dir weiterhelfen

lg Stevo

Bezug
        
Bezug
Differentialgleichung I Grades: Danke für die schnelle Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Sa 01.07.2006
Autor: MatheNoop

Ich muss mir das gleich nochmal in Ruhe durchlesen, dann mal schauen ob ich das verstehe oder nicht ..



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]