matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Differentialgleichung, Ansatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Differentialgleichung, Ansatz
Differentialgleichung, Ansatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung, Ansatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:20 Mi 09.05.2007
Autor: FrankM

Hallo,

meine Frage bezieht sich nicht auf eine Aufgabe sondern auf ein durchgerechnetes Beispiel, daher keine Aufgabenstellung.

Es geht um die Konstruktion der Kugelflächenfunktionen. Dabei folgende DGL gelöst werden:
[mm] \bruch{d}{dt}\links((1-t^2)\bruch{df}{dt}\rechts)+(\alpha-\bruch{m^2}{1-t^2})f=0 [/mm]
Meine Frage bezieht sich auf die Motivation des Ansatzes
[mm] f=(1-t^2)^{m/2}g_m(t) [/mm]
Klar ist mir, dass bei [mm] t=\pm [/mm] 1 was besonders passiert und daher diese Punkte entscheidend sind. Da [mm] \bruch{m^2}{1-t^2}f(t) [/mm] regulär bleiben muss, muss sich also f bei t=-1 wie [mm] (1+t)^k [/mm] mit unbekannten k verhalten.
Setz man das alles ein erhält man (ohne den [mm] \alpha [/mm] Term)
[mm] (1+t)^{k-1}(-2tk+k(k-1)(1-t)-\bruch{m^2}{1-t})=0 [/mm]
Jetzt wird argumentiert, dass der Faktor in Klammern für [mm] t\to-1 [/mm] verschwinden und daher
[mm] (-2tk+k(k-1)(1-t)-\bruch{m^2}{1-t})=0 [/mm]
gelten muss. Warum muss dieser Term verschwinden, wenn doch schon der Vorfaktor [mm] (1+t)^{k-1} [/mm] verschwindet?

Vielen Dank
Frank
P.S.: Sorry für den langen Post aber ich konnte es irgendwie nicht kürzen.

        
Bezug
Differentialgleichung, Ansatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 11.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]