matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung 1.Ordnun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung 1.Ordnun
Differentialgleichung 1.Ordnun < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1.Ordnun: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:40 Mo 28.05.2012
Autor: ggT

Aufgabe
Bestimmen Sie die Lösungsgesamtheit der Differentialgleichung

y' = [mm] \bruch{x^{2}}{y^{2}}, [/mm] (x,y) [mm] \in [/mm] U = [mm] \IR \times (0,\infty). [/mm]

Achten Sie dabei auch auf die Definitionsbereiche der Lösungen. Skizzieren Sie die Lösungsgesamtheit.

Hallo,

ich sitze gerade an dieser Aufgabe und weiß nicht so recht wie ich anfangen soll,  da ich noch nicht allzu vertraut mit derartigen Differentialgleichungen bin.

Ich weiß soweit, dass es eine Differentialgleichung 1.Ordnung ist, aber verstehe nicht so ganz was mit dem 2.Teil oben gemeint ist bzw. inwiefern ich das bei der Rechnung berücksichtigen muss.
x,y soll ja aus der Umgebung U gewählt werden, die sich aus dem Kreuzprodukt der Reellen Zahlen und der Menge [mm] (0,\infty) [/mm] ergeben soll.

Aber was mach ich nun damit, wie fange ich an?
Bin für jeden Tipp, jede Hilfe oder Lösungsansatz dankbar.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mo 28.05.2012
Autor: kamaleonti

Hallo,
> Bestimmen Sie die Lösungsgesamtheit der
> Differentialgleichung
>  
> y' = [mm]\bruch{x^{2}}{y^{2}},[/mm] (x,y) [mm]\in[/mm] U = [mm]\IR \times (0,\infty).[/mm]

Substituiere [mm] z:=\frac{x}{y}. [/mm]

>  
> Achten Sie dabei auch auf die Definitionsbereiche der
> Lösungen. Skizzieren Sie die Lösungsgesamtheit.
>  Hallo,
>  
> ich sitze gerade an dieser Aufgabe und weiß nicht so recht
> wie ich anfangen soll,  da ich noch nicht allzu vertraut
> mit derartigen Differentialgleichungen bin.
>  
> Ich weiß soweit, dass es eine Differentialgleichung
> 1.Ordnung ist, aber verstehe nicht so ganz was mit dem
> 2.Teil oben gemeint ist bzw. inwiefern ich das bei der
> Rechnung berücksichtigen muss.
>  x,y soll ja aus der Umgebung U gewählt werden, die sich
> aus dem Kreuzprodukt der Reellen Zahlen und der Menge
> [mm](0,\infty)[/mm] ergeben soll.

Finde erst einmal eine Lösung für y>0. Dann kannst du dir Gedanken über den Definitionsbereich machen.

LG


Bezug
                
Bezug
Differentialgleichung 1.Ordnun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Mo 28.05.2012
Autor: Vectorspace

Es geht viel einfacher: Diese Differentialgleichung ist vom Typ getrennte Variable, du kannst sie durch Trennung der Variablen direkt lösen (vergiss die Substitution, viel zu aufwendig), d.h.
[mm] \[\bruch{dy}{dx}=\bruch{x^{2}}{y^{2}}\] [/mm]
[mm] \[\int y^{2}dy=\int x^{2}dx\] [/mm]
[mm] \[y^{3}=x^{3}+C\] [/mm]
[mm] \[y=(x^{3}+C)^{1/3}\] [/mm]

Die Konstante kannst du vereinfachen ("3C=C"). Und fertig, das ist die allgemeine Lösung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]