matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDifferentialgleichung 1.Ordnun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Differentialgleichung 1.Ordnun
Differentialgleichung 1.Ordnun < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialgleichung 1.Ordnun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Di 25.10.2011
Autor: kozlak

Aufgabe
Geg. ist die DGL (1+x)y'+ [mm] \bruch{2y}{1-x}=0 [/mm]

1) Gib den Definitionsbereich als Vereinigung von Intervallen an
2)Ermittle zu jedem Intervall die allg. Lösung des DGL, gib zudem das max. Definitionsintervall

Hallo,
irgendwie verstehe ich wohl nicht ganz, was hier die Aufgabenstellung verlangt. Was heißt denn "Vereinigung der Intervalle"? Wie sieht das aus?

Habe zunächst umgeformt zu:

(1+x)y'+ [mm] \bruch{2y}{1-x}=0 [/mm]
y'= [mm] \bruch{-2y}{1-x^2} [/mm] , für x [mm] \not= \pm [/mm] 1

[mm] \bruch{dy}{dx}=\bruch{-2y}{1-x^2} [/mm]

[mm] \bruch{dy}{y}=\bruch{-2dx}{1-x^2}, [/mm] für [mm] y\not= [/mm] 0 .
Somit Definitionsbereich des DLG D={R\ y=0, [mm] x=\pm [/mm] 1}



[mm] \integral\bruch{dy}{y}=-2\integral\bruch{dx}{1-x^2} [/mm]
ln |y|=-2arctanh +c  
-> y= [mm] e^{-2arctanh+c}, [/mm]  für -1<x<1
ln |y|=-2arctanh +c
-> y= [mm] e^{-2arcoth+c}, [/mm] für [mm] -\infty

Ist das bisher okay? Was muss ich noch machen?

mfg,
kozlak

        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 25.10.2011
Autor: schachuzipus

Hallo kozlak,


> Geg. ist die DGL (1+x)y'+ [mm]\bruch{2y}{1-x}=0[/mm]
>  
> 1) Gib den Definitionsbereich als Vereinigung von
> Intervallen an
>  2)Ermittle zu jedem Intervall die allg. Lösung des DGL,
> gib zudem das max. Definitionsintervall
>  Hallo,
>  irgendwie verstehe ich wohl nicht ganz, was hier die
> Aufgabenstellung verlangt. Was heißt denn "Vereinigung der
> Intervalle"? Wie sieht das aus?
>  
> Habe zunächst umgeformt zu:
>
> (1+x)y'+ [mm]\bruch{2y}{1-x}=0[/mm]
>  y'= [mm]\bruch{-2y}{1-x^2}[/mm] , für x [mm]\not= \pm[/mm] 1 [ok]
>  
> [mm]\bruch{dy}{dx}=\bruch{-2y}{1-x^2}[/mm]
>  
> [mm]\bruch{dy}{y}=\bruch{-2dx}{1-x^2},[/mm] für [mm]y\not=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 .

>  Somit Definitionsbereich des DLG D={R\ y=0, [mm]x=\pm[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1}

Hmm, so ganz genau ist mir auch nicht klar, was die mit Definitionsbereich meinen? Den, für die die Dgl definiert ist? Oder den der (einer) Lösungsfunktion?

Ich würde meinen, dass die Dgl. für [mm]x\neq 1[/mm] definiert ist und dass  [mm]y_1:(-\infty,1)\to\IR, y\mapsto 0[/mm] und [mm]y_2:(1,\infty)\to\IR, x\mapsto 0[/mm]  die Dgl. ja auch trivial lösen ...

>  
>
>
> [mm]\integral\bruch{dy}{y}=-2\integral\bruch{dx}{1-x^2}[/mm]
>  ln |y|=-2arctanh +c  
> -> y= [mm]e^{-2arctanh+c},[/mm]  für -1<x<1
>  ln |y|=-2arctanh +c
> -> y= [mm]e^{-2arcoth+c},[/mm] für [mm]-\infty

Puh, lass das doch mit dem komischen [mm]\operatorname{arctanh}[/mm]-Dingens.

Ich würde schreiben: [mm]\frac{1}{y} \ dy \ = \ \frac{2}{x^2-1} \ dx[/mm]

Und rechterhand PBZ machen:

[mm]\frac{2}{x^2-1}=\frac{2}{(x-1)(x+1)}=\frac{A}{x-1}-\frac{B}{x+1}[/mm]

Das führt zu (nachrechnen!)

[mm]\int{\frac{1}{y} \ dy} \ = \ \int{\left(\frac{1}{x-1}-\frac{1}{x+1}\right) \ dx}[/mm]

Also [mm]\ln(|y|) \ = \ \ln(|x-1|)-\ln(|x+1|)+c[/mm]

Also [mm]y=\hat c\cdot{}\frac{x-1}{x+1}[/mm]

>  
>
> Ist das bisher okay? Was muss ich noch machen?
>  
> mfg,
>  kozlak

Gruß

schachuzipus
</x<1


Bezug
                
Bezug
Differentialgleichung 1.Ordnun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 25.10.2011
Autor: kozlak

Hallo.

Ja,ja....die gute Partialbruchzerlegung. Hatte die total vergessen. Vielen Dank für den Hinweis!


Hatte zu 1) vergessen zu schreiben, nach der Definitionsbereich der DGl ist gefragt.
zu2) Verstehe ich nicht. Gibt es etwa unterschiedliche allg. Lösungen für die Intervalle?

mfg,
kozlak

Bezug
                        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Di 25.10.2011
Autor: MathePower

Hallo kozlak,

> Hallo.
>  
> Ja,ja....die gute Partialbruchzerlegung. Hatte die total
> vergessen. Vielen Dank für den Hinweis!
>  
>
> Hatte zu 1) vergessen zu schreiben, nach der
> Definitionsbereich der DGl ist gefragt.
>  zu2) Verstehe ich nicht. Gibt es etwa unterschiedliche
> allg. Lösungen für die Intervalle?
>  


Genau so ist es.


> mfg,
>  kozlak


Gruss
MathePower

Bezug
                                
Bezug
Differentialgleichung 1.Ordnun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 26.10.2011
Autor: kozlak

Hallo,

muss doch noch einmal nachfragen. Also irgendwie ist mir immer noch nicht klar, wie das geht?

Habe jetzt als Intervallvereinigung das hier: ] - [mm] \infty, -1[\cup [/mm] ]-1,1[ [mm] \cup [/mm] ]1, [mm] \infty [/mm] [. Jetzt stelle ich mich aber bei der Findung der jeweiligen allg. Lösung an.

mfg,
kozlak

Bezug
                                        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mi 26.10.2011
Autor: MathePower

Hallo kozlak,

> Hallo,
>  
> muss doch noch einmal nachfragen. Also irgendwie ist mir
> immer noch nicht klar, wie das geht?
>  
> Habe jetzt als Intervallvereinigung das hier: ] - [mm]\infty, -1[\cup[/mm]
> ]-1,1[ [mm]\cup[/mm] ]1, [mm]\infty[/mm] [. Jetzt stelle ich mich aber bei
> der Findung der jeweiligen allg. Lösung an.
>  


Für jedes Teilintervall ist die allgemeine Lösung der DGL anzugeben.


> mfg,
>  kozlak


Gruss
MathePower

Bezug
                                                
Bezug
Differentialgleichung 1.Ordnun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 27.10.2011
Autor: kozlak

Hallo,

tut mir leid, aber ich stehe anscheinend auf dem Schlauch.
Für mich wären für alle drei Intervalle die allg. Lösung [mm] y=c*ln|\bruch{x+1}{x-1}|. [/mm] Für [mm] ]\infty,-1[ [/mm] und [mm] ]1,\infty[ [/mm] können allerdings die Betragstriche weggelassen werden. Ist das gemeint?


mfg,
kozlak

Bezug
                                                        
Bezug
Differentialgleichung 1.Ordnun: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 27.10.2011
Autor: MathePower

Hallo kozlak,

> Hallo,
>  
> tut mir leid, aber ich stehe anscheinend auf dem Schlauch.
> Für mich wären für alle drei Intervalle die allg.
> Lösung [mm]y=c*ln|\bruch{x+1}{x-1}|.[/mm] Für [mm]]\infty,-1[[/mm] und
> [mm]]1,\infty[[/mm] können allerdings die Betragstriche weggelassen
> werden. Ist das gemeint?

>


Ja.

Genau genommen können nur für x > 1  die Betragsstriche weggelassen werden.


>

> mfg,
>  kozlak


Gruss
MathePower

Bezug
                                                                
Bezug
Differentialgleichung 1.Ordnun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Do 27.10.2011
Autor: kozlak



Vielen Dank für die Hilfe!!


mfg,
kozlak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]