matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesDifferentialformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Differentialformen
Differentialformen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Sa 17.01.2015
Autor: questionpeter

Aufgabe
Sei  [mm] \omega(x)=f(x)dx [/mm] eine 1-Form auf [mm] M=\IR. [/mm] Sei [mm] \phi: \IR \rightarrow \IR [/mm] glatt. Zeige, dass [mm] \phi^{\*}w(x)=f(\phi(x))\phi'(x)dx [/mm] gilt:

guten abend,

die aufgabe ist wahrschienlich einfach zu lösen, aber ich stehe total auf dem schlauch und hoffe ihr könnt mir einen tipp dazu geben.

ich habe es mit zurückziehend der differentialform probiert
und habe dann folg gemacht:

[mm] \phi^{\*}\omega(x)=\phi^{\*}f(x)dx=f(\phi(x))dx=f(\phi(x))\phi'(x) [/mm]

danke im voraus

gruß,
questionpeter

        
Bezug
Differentialformen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Sa 17.01.2015
Autor: andyv

Hallo,

so funktioniert das nicht.

Nach Definition ist für $x,y [mm] \in \mathbb{R}$: [/mm]

$ [mm] (\phi^{\*}\omega(x))(y)=(\omega(\phi(x)))((d\phi(x))(y))$. [/mm]

Berechne nun [mm] $(d\phi(x))(y)$, [/mm] also das Differential an der Stelle x in Richtung y.

Liebe Grüße

Bezug
                
Bezug
Differentialformen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:39 So 18.01.2015
Autor: questionpeter

danke für deine hilfe

aber wie kommst du auf [mm] (\omega(\phi(x)))(d\phi(x))(y)? [/mm]
im skript stand im zusammenhang mit dem zurückziehen so etwas wie [mm] \phi^{\*}\omega=\omega\circ d\phi [/mm]

wenn ich das darauf anwende würde ich doch [mm] \phi^{\*}\omega(x)=\omega(d\phi(x)) [/mm] oder?

also wenn ich jetzt ausgehend von [mm] (\omega(\phi(x)))(d\phi(x))(y), (d\phi(x))(y) [/mm] ableitet erhalte ich [mm] (d\phi(x)\phi'(x)dx)(y), [/mm] oder?

und wenn man für [mm] \omega(\phi(x))=f(\phi(x)) d\phi(x) [/mm] einsetze erhalte ich dann [mm] (\omega(\phi(x)))(d\phi(x))(y)=(f(\phi(x)) d\phi(x))(d\phi(x)\phi'(x)dx)(y). [/mm]

ist [mm] (d\phi(x))^2 [/mm] dasselbe wie [mm] dd\phi(x)? [/mm] dann würde es wegfallen und wir hätten den ausdruck was zu zeigen war.

sorry das ich mich evtl. dumm anstelle, aber das thema bereitet mir zurzeit sowas von kopf zerbrechen. danke nochmals für deine hilfe.

gruß,
questionspeter  


Bezug
                        
Bezug
Differentialformen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 20.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]