matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDifferentiale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Differentiale
Differentiale < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentiale: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:35 Mo 24.05.2010
Autor: flare

Schönen guten Abend.

Es geht um die Legendre Transformation.

dabei sei eine Funktion gegeben f=f(x)
mit dem Differential [mm] df=\bruch{df}{dx}dx=u [/mm] dx, [mm] u:=\bruch{df}{dx} [/mm]
Soweit so gut, aber nun kommt was, was ich nicht ganz nachvollziehen kann.
Gesucht sei eine Funktion g=g(u), für die
[mm] \bruch{dg}{du}=\pm [/mm] x gilt.
es folgt df=u*dx=d(ux)-x(du) (1)
=> $d(f-ux)=-x du => [mm] \bruch{d}{du}(f-ux)=-x$ [/mm]

Man definiert
[mm] g(u)=f(x)-u*x=f(x)-x\bruch{df}{dx} [/mm] (2)

Also beim Schreiben habe ich doch die erste Frage geklärt und zwar warum (1) gilt.
addiert man x(du) rüber hat man das totale Differential von ux. Kann man anders irgendwie darauf kommen, dass $ u*dx=d(ux)-x(du)$, oder geht es nur darüber?
Wie kommt nun (2) zustande?
kann man dort f(x) einfach einsetzen, weil es nach du sowieso wegfällt und man dann wieder die Bedingung [mm] \bruch{dg}{du}=\pm [/mm] x oder gibt es da noch einen anderen logischen Zusammenhang, dass die Funktion g(u) gerade so aussieht? Sehs nämlich irgendwie nicht.


Hat jemand einen Literaturtyp zum Umgang mit Differentialen?
Irgendwie bin ich da noch recht unsicher.
Zur Not würde auch ein Internetlink reichen, aber ein Buch wäre mir lieber.

Vielen herzlichen Dank

        
Bezug
Differentiale: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:09 Mo 24.05.2010
Autor: flare

Ich denke ich habs jetzt ungefähr

Wenn ich in $ [mm] \bruch{d}{du}(f-ux)=-x [/mm] ; [mm] \bruch{dg}{du}=\pm [/mm]  x $ einsetze und mal du nehme (man multipliziert nicht wirklich damit oder? was passiert hier eigl, - deshalb brauche ich ein Buch :-), und dann integriere erhalte ich wohl (2).

Glaub die Frage ist beantwortet?
aber für Literaturtipps wäre ich noch dankbar.

Bezug
                
Bezug
Differentiale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 26.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Differentiale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 26.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]