matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieDiffbarkeitsklasse
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Diffbarkeitsklasse
Diffbarkeitsklasse < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeitsklasse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:45 Mo 22.04.2013
Autor: valoo

Aufgabe
Sei [mm] X [/mm] eine differenzierbare Untermannigfaltigkeit eines affines Raumes. Zeigen Sie: Ist das Tangentialbündel [mm] T(X) [/mm] eine [mm] C^{k}[/mm] -Untermannigfaltigkeit, so ist [mm] X [/mm] eine [mm] C^{k+1} [/mm] -Mgfkt.

Hallo!

In der Vorlesung haben wir bereits gezeigt, dass das Tangentialbündel einer [mm] C^{k}-Mgfkt. [/mm] eine [mm] C^{k-1}-Mgfkt. [/mm] ist. Dabei wird ein Atlas für T(X) mittels der Ableitung von Karten von X konstruiert, weshalb das ganze dann noch (k-1)-mal stetig diff'bar ist. Wie allerdings zeigt man, dass die zu Grunde liegende Mannigfaltigkeit immer eine ums eins höhere Diffbarkeitsklasse hat?  Ich weiß nicht, wie man ausgehend von einem Atlas für das Tangentialbündel einen Atlas für X konstruieren könnte, der von höherer Differenzierbarkeitsklasse ist? Wie also kann man an diese Aufgabe herangehen?
Oder kann man einfach sagen: Hätte man einen Punkt x in X, sodass es nur eine [mm] C^{k}-Karte [/mm] um x gibt, so kriegt man so nur [mm] C^{k-1}-Karten [/mm] um (x,v) ( v Tangentialvektor an x). Diese sollten mit dem gegebenen Atlas auf T(X) verzträglich sein, können sie aber nicht sein, wenn sie nur [mm] C^{k-1} [/mm] sind?

        
Bezug
Diffbarkeitsklasse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:04 Mi 24.04.2013
Autor: valoo

Oder ist diese Behauptung etwa falsch? (Dass der Grad der Diffbarkeit von M immer eins höher ist als von T(M)). Ich habe gerade einen Satz gefunden, der besagt, dass jede [mm] C^{k}-Mgfkt. [/mm] auch eine [mm] C^{m}-Mannigfaltigkeit [/mm] ist (für alle m [mm] \be [/mm] k ), wbeo die [mm] C^{m}-Struktur [/mm] mit der [mm] C^{k}-Struktur [/mm] verträglich ist und sie eindeutig bezüglich [mm] C^{m}-Diffeomorphie [/mm] ist. Bzw. ist jede [mm] C^{1}-Mgfkt [/mm] dann doch schon [mm] C^{k}-Mgfkt. [/mm] ist für beliebiges k, was das ganze trivial machen würde?

Bezug
        
Bezug
Diffbarkeitsklasse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 26.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]