matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisDiffbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Diffbarkeit
Diffbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 09.01.2006
Autor: DeusRa

Aufgabe
Zu vorgegebener natürlicher Zahl n betrachen wir die Fkt. f: [mm] \IR \to \IR [/mm] mit
[mm] f(n)=\begin{cases} 0, & \mbox{für } x\le0 \mbox{} \\ x^{n}, & \mbox{für } x>0 \mbox{} \end{cases} [/mm]

Zeigen Sie, dass diese Fkt (n-1)-mal diffbar ist, aber nicht n-mal, und berechnen Sie die Ableitungen [mm] f^{(k)} [/mm] für [mm] 1\lek

Ich weiß nicht wie ich an diese Aufgabe dran gehen soll.
Wie zeigt man, dass etwas diffbar ist. ??
Über Induktion ?
Außerdem komme ich selber intuitiv zu dem Schluss, dass es n-mal diffbar ist, was ja eigentlich nicht sein kann.
Danke

        
Bezug
Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 09.01.2006
Autor: Julius

Hallo!

Leicht zeigt man (über die Betrachtung der Differentialquotienten im Nullpunkt) die $(n-1)$-fache Differenzierbarkeit und

[mm] $f^{(k)}(x) [/mm] = [mm] \left\{ \begin{array}{ccc} 0 & , & x \le 0\\[5pt] \frac{n!}{(n-k)!} x^{n-k} & , & x>0. \end{array} \right.$ [/mm]

für [mm] $k=0,1,\ldots,n-1$. [/mm]

Insbesondere ist

[mm] $f^{(n-1)}(x) [/mm] = [mm] \left\{ \begin{array}{ccc} 0 & , & x \le 0\\[5pt] n! x & , & x>0. \end{array} \right.$ [/mm]

Diese Funktion ist in $x=0$ nicht differenzierbar, wie die Betrachtung des links- bzw. rechtsseitigen Differentialquotienten leicht offenbart.

Liebe Grüße
Julius


Bezug
                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 09.01.2006
Autor: DeusRa

Hmm........
ich verstehe ich es noch nicht ganz.
Also die Ableitungen verstehe ich ja schon.

Aber wie zeigt man, dass die f(x)-Fkt (n-1)-mal diffbar ist, aber nicht n-mal.
Wäre nett, wenn mir das noch jemand erklären könnte.

Bezug
                        
Bezug
Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 09.01.2006
Autor: Julius

Hallo!

Bilde doch mal den links- und rechtsseitigen Differentialquotienten von [mm] $f^{(n-1)}$ [/mm] in $x=0$. Was fällt dir auf?

Liebe Grüße
Julius

Bezug
                                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 09.01.2006
Autor: DeusRa

Ok, also mit Diffquotienten meinst du wohl

[mm] \limes_{h\rightarrow 0} \bruch{f(x+h)-f(x)}{h} [/mm]
mit x=0 folgt:
[mm] \limes_{h\rightarrow 0} \bruch{f(h)-f(0)}{h}= [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{f(h)-0}{h}= [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{0}{h}=0. [/mm]

Ich weiß um ehrlich zu sein nicht genau was du mit Diffquotient meinst, da wir das in der Vorlesung noch nicht hatten.
Habe die Diffquot. aus dem Netz.
Was bedeutet es, wenn beim lim Null rauskommt.
Was ist die Aussage davon.

Bezug
                                        
Bezug
Diffbarkeit: und nun von rechts
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 09.01.2006
Autor: Roadrunner

Hallo Rados!


Das mit dem Differenzenquotienten war schon sehr richtig. Hierbei handelt es sich aber lediglich um den linksseitigen Grenzwert mit $h \ < \ 0$, d.h. hier gilt: [mm] $f^{(n-1)}(h) [/mm] \ = \ 0$ (wie Du auch richtig eingesetzt hast).


Nun betrachte den rechtsseitigen Grenzwert mit $h \ > \ 0$.
Denn dort gilt: [mm] $f^{(n-1)}(h) [/mm] \ = \ n!*h$ (siehe Julius' Antwort).

Was erhältst Du nun als Grenzwert?


[aufgemerkt] Und nur wenn diese beiden Grenzwerte übereinstimmen, ist die entsprechende Funktion an der Stelle [mm] $x_0$ [/mm] auch differenzierbar.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 09.01.2006
Autor: DeusRa

Na gut,
dann wollen wir mal:

also
jetzt muss man den rechtsseitigen Diffquot. zeigen.
Also

[mm] \limes_{h\rightarrow\infty} \bruch{f(x+h)-f(x)}{h} [/mm] mit x=0 folgt:
[mm] \limes_{h\rightarrow \infty} \bruch{f(h)-f(0)}{h}= [/mm]
[mm] \limes_{h\rightarrow \infty} \bruch{f(h)}{h}= [/mm]
[mm] \limes_{h\rightarrow \infty} \bruch{h^{n}}{h}= [/mm]
[mm] h^{n-1}. [/mm]
Also das kommt bei mir raus.
Da der linksseitige Diffquot. Null ist und der rechtsseitige [mm] h^{n-1} [/mm] für x=0 ergibt ist die Funktion an x=0 nicht diffbar, wenn ich es richtig verstanden habe.

Nun gut.
Kann ich jetzt einfach daraus folgern, dass die Fkt. f(x) n-1 mal diffbar ist, weil am Punkte Null es keine diffbarkeit gibt, bzw. dort nicht diffbar ist und somit quasi eine diffbarkeit "fehlt" ?
(Wieso könnte man dann ausschließen, dass an den Restlichen Stellen diffbarkeit vorliegt ?)

Bezug
                                                        
Bezug
Diffbarkeit: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 09.01.2006
Autor: Roadrunner

Hallo Rados!


Einige Korrekturen ...


Zunächst einmal wird beim Differenzenquotienten grundsätzlich der Grenzwert betrachtet für $h [mm] \rightarrow\red{0}$ [/mm] .

Dann sind wir gerade bei der $(n-1)_$. Ableitung [mm] $f^{(n-1)}$ [/mm] . Dort gilt für [mm] $x\ge [/mm] 0$ : [mm] $f^{(n-1)}(x) [/mm] \ = \ n!*x$ .


> [mm]\limes_{h\rightarrow \infty} \bruch{f(h)}{h}=[/mm] [mm]\limes_{h\rightarrow \infty} \bruch{h^{n}}{h}=[/mm]

[notok] Siehe oben:

[mm] $\limes_{h\rightarrow 0}\bruch{f^{(n-1)}(0+h)-f^{(n-1)}(0)}{h} [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\bruch{n!*h-0}{h} [/mm] \ = \ n! \ [mm] \not= [/mm] \ 0$


> Da der linksseitige Diffquot. Null ist und der
> rechtsseitige [mm]h^{n-1}[/mm] für x=0 ergibt ist die Funktion an
> x=0 nicht diffbar, wenn ich es richtig verstanden habe.

[ok] Prinzipiell richtig verstanden!


> Kann ich jetzt einfach daraus folgern, dass die Fkt. f(x)
> n-1 mal diffbar ist, weil am Punkte Null es keine
> diffbarkeit gibt, bzw. dort nicht diffbar ist und somit
> quasi eine diffbarkeit "fehlt" ?

Nein, diese Argumentation ist falsch! Für jede andere Ableitung (und die Ausgangsfunktion) stimmen die beiden Grenzwerte des Differenzenquotienten (linksseitig und rechtsseitig) an der Stelle [mm] $x_0 [/mm] \ = \ 0$ überein.

Probiere das mal aus (beachte dabei Julius' Antwort über die $k_$-te Ableitung [mm] $f^{(k)}(x)$ [/mm] ...)!


> (Wieso könnte man dann ausschließen, dass an den
> Restlichen Stellen diffbarkeit vorliegt ?)

Weil sich hier die Funktion aus beliebig oft differenzierbaren Teilfunktionen zusammensetzt. Daher ist lediglich die Nahtstelle bei [mm] $x_0 [/mm] \ = \ 0$ relevant und interessant.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]