matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationDiff'barkeit von Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Diff'barkeit von Funktionen
Diff'barkeit von Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff'barkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 06.03.2008
Autor: MatheNullplan00

Aufgabe
Geben Sie den maximalen Definitionsbereich sowie alle stellen x an, an denen die gegebene Funktion f differenzierbar ist. Bestimmen sIE ggf. die Ableitungen

Hallo,
kann mir eine mal helfen und mir anhand folgender Aufgabe erläutern, wie ich genau vorgehen muss.

[mm] f(x)=x^n*e^x, n\in\IN [/mm]

        
Bezug
Diff'barkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Do 06.03.2008
Autor: leduart

Hallo
Wo ist eine Idee?
was weisst du über [mm] x^n? [/mm] was über [mm] e^x, [/mm] was bedeutet das für das Produkt?
Differenzieren nach der Produktregel solltest du können.
Gruss leduart

Bezug
        
Bezug
Diff'barkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mo 17.03.2008
Autor: Jenz

Frage so am Rande: Es handelt sich bei der Funktion doch um eine Funktionenschar, oder? also f(x,n) = ...

Bezug
                
Bezug
Diff'barkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mo 17.03.2008
Autor: leduart

Hallo
Ja, die fkt hängt von n ab. wenn n<0 erlaubt ist musst du bei x=0 aufpassen. sonst ist das prinzipielle Verhalten für [mm] n\ge1 [/mm] gleich.
Gruss leduart

Bezug
                        
Bezug
Diff'barkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mo 17.03.2008
Autor: Jenz

In deinem Beispiel wäre doch eine Asymptote bei x=0 - an dieser Stelle ist die Funktion, falls n negativ werden dürfte, nicht differenzierbar.
Doch wie ist das jetzt bei der Ursprungsaufgabe? Wie lautet denn da der Definitionsbereich und die differenzierbaren Stellen? Ich habe mir die Graphen mit veschiedenen n's zeichnen lassen - sehe aber da keine markanten Stellen. Für mich ist die Funktion überall differenzierbar und einsetzen darf man auch alles - wenn n=0 ist, hat man auch eine einfache e-Funktion.

Also, habe ich Recht mit der Asymptote ? Und wie lautet die Lösung der Aufgabe??

Gruß, Gruß



Bezug
                                
Bezug
Diff'barkeit von Funktionen: selber erkannt
Status: (Antwort) fertig Status 
Datum: 19:36 Mo 17.03.2008
Autor: Loddar

Hallo Jenz!


> In deinem Beispiel wäre doch eine Asymptote bei x=0 - an
> dieser Stelle ist die Funktion, falls n negativ werden
> dürfte, nicht differenzierbar.

[ok]


> Doch wie ist das jetzt bei der Ursprungsaufgabe? Wie
> lautet denn da der Definitionsbereich und die differenzierbaren Stellen?

Gibt es denn Werte, die ausgeschlossen werden müssen?


> Ich habe mir die Graphen mit veschiedenen n's zeichnen lassen
> - sehe aber da keine markanten Stellen. Für mich ist die Funktion überall
> differenzierbar und einsetzen darf man auch alles - wenn
> n=0 ist, hat man auch eine einfache e-Funktion.

[ok]

  

> Also, habe ich Recht mit der Asymptote ?

[ok] Ja!


> Und wie lautet die Lösung der Aufgabe??

Siehe Deinen eigenen Text!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]