matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDiff.gl. mit Separation der V.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Diff.gl. mit Separation der V.
Diff.gl. mit Separation der V. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.gl. mit Separation der V.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:02 Fr 18.11.2011
Autor: Aucuba

Aufgabe
Bestimmen Sie die allgemeine Lösung der Differentialgleichung und geben Sie den Definitionsbereich der Lösung an.
[mm] y*y'+x^{-2}=0, x\not=0 [/mm]

Ich habe folgendes berechnet:
[mm] y'=-\bruch{1}{x^{2}*y} [/mm]
[mm] \bruch{dy}{dx}= -x^{-2}*\bruch{1}{y} [/mm]
[mm] \bruch{dy}{\bruch{1}{y}}= -x^{-2}dx [/mm]
[mm] \integral_{}^{}{y dy}=\integral_{}^{}{-x^{-2} dx} [/mm]
[mm] \bruch{y^{2}}{2}+c=\bruch{1}{x}+k [/mm]
[mm] \bruch{y^{2}}{2}=\bruch{1}{x}+(k-c) [/mm]   Umbenennung (k-c)=a a<0
[mm] \bruch{y^{2}}{2}=\bruch{1}{x}+a [/mm]
[mm] y^{2}=\bruch{2}{x}+a [/mm]
[mm] y=\wurzel{\bruch{2}{x}+a} [/mm]
Stimmt das soweit? Wie bestimmt man den Definitionsbereich?

        
Bezug
Diff.gl. mit Separation der V.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Fr 18.11.2011
Autor: MathePower

Hallo Aucuba,

> Bestimmen Sie die allgemeine Lösung der
> Differentialgleichung und geben Sie den Definitionsbereich
> der Lösung an.
>  [mm]y*y'+x^{-2}=0, x\not=0[/mm]
>  Ich habe folgendes berechnet:
>  [mm]y'=-\bruch{1}{x^{2}*y}[/mm]
>  [mm]\bruch{dy}{dx}= -x^{-2}*\bruch{1}{y}[/mm]
>  
> [mm]\bruch{dy}{\bruch{1}{y}}= -x^{-2}dx[/mm]
>  [mm]\integral_{}^{}{y dy}=\integral_{}^{}{-x^{-2} dx}[/mm]
>  
> [mm]\bruch{y^{2}}{2}+c=\bruch{1}{x}+k[/mm]
>  [mm]\bruch{y^{2}}{2}=\bruch{1}{x}+(k-c)[/mm]   Umbenennung (k-c)=a
> a<0
>  [mm]\bruch{y^{2}}{2}=\bruch{1}{x}+a[/mm]
>  [mm]y^{2}=\bruch{2}{x}+a[/mm]
>  [mm]y=\wurzel{\bruch{2}{x}+a}[/mm]


Genau genommen ergeben sich hier 2 Lösungen:

[mm]y=\blue{+}\wurzel{\bruch{2}{x}+a}[/mm]

und

[mm]y=\blue{-}\wurzel{\bruch{2}{x}+a}[/mm]


>  Stimmt das soweit? Wie bestimmt man den
> Definitionsbereich?


Ja, das stimmt soweit.

Für die Bestimmung des Definitionsbereiches betrachte

[mm]y^{2}=\bruch{2}{x}+a[/mm]

Da die linke Seite [mm]}\ge 0[/mm], muß das auch für die rechte Seite gelten.

Daher ergibt sich der Definitionsbereich aus der Ungleichung

[mm]\bruch{2}{x}+a \ge 0[/mm]

Natürlich ist de Definitionsbereich von der Konstanten a abhängig.


Gruss
MathePower

Bezug
                
Bezug
Diff.gl. mit Separation der V.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Fr 18.11.2011
Autor: Aucuba

Vielen Dank für Deine Hilfe! =)
Gruss Aucuba

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]