matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisDiff.barkeit+offene Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Diff.barkeit+offene Mengen
Diff.barkeit+offene Mengen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff.barkeit+offene Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 So 08.03.2009
Autor: ronja33

Aufgabe
Es seinen U  [mm] \subseteq \IC [/mm] offen und f: U [mm] \to \IC [/mm] differenzierbar in [mm] z_{0} \in [/mm] U. Man setze V = [mm] {\overline{z} : z \in U} [/mm]
a) Beweisen Sie, dass V offen ist.
b) Man definiere g: V [mm] \to \IC [/mm] durch g(z) = [mm] \overline{f(\overline{z})} [/mm]
    Beweisen sie, dass g in [mm] \overline{z_{0}} [/mm] differenzierbar ist und dass gilt [mm] g'(\overline{z}) [/mm] = [mm] \overline{f'(z_{0}} [/mm] für alle z [mm] \in [/mm] V
c) Man definiere h: V [mm] \to \IC [/mm] durch h(z) = [mm] f(\overline{z}). [/mm] Untersuchen Sie, wann h in [mm] z_{0} [/mm] differenzierbar ist.

Hallo,

bin hier ziemlich überfragt:(.
a) Wie beweist man, dass V offen ist?
b) Sollte man hier die Cauchy-Riemann-Differentialgleichungen verwenden?

Weiß leider gar nicht, wie ich die Beweise führen könnte.

Vielen Dank für jede Hilfe im Voraus!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Diff.barkeit+offene Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 So 08.03.2009
Autor: Somebody


> Es seinen U  [mm]\subseteq \IC[/mm] offen und f: U [mm]\to \IC[/mm]
> differenzierbar in [mm]z_{0} \in[/mm] U. Man setze V = [mm]{\overline{z} : z \in U}[/mm]
>  
> a) Beweisen Sie, dass V offen ist.
>  b) Man definiere g: V [mm]\to \IC[/mm] durch g(z) =
> [mm]\overline{f(\overline{z})}[/mm]
>      Beweisen sie, dass g in [mm]\overline{z_{0}}[/mm]
> differenzierbar ist und dass gilt [mm]g'(\overline{z})[/mm] =
> [mm]\overline{f'(z_{0}}[/mm] für alle z [mm]\in[/mm] V
>  c) Man definiere h: V [mm]\to \IC[/mm] durch h(z) =
> [mm]f(\overline{z}).[/mm] Untersuchen Sie, wann h in [mm]z_{0}[/mm]
> differenzierbar ist.
>  Hallo,
>  
> bin hier ziemlich überfragt:(.
> a) Wie beweist man, dass V offen ist?

Jedes Element von $V$ lässt sich als [mm] $\overline{z}_0$ [/mm] mit [mm] $z_0\in [/mm] U$ darstellen. Da $U$ offen ist, gibt es ein [mm] $\varepsilon>0$ [/mm] mit [mm] $\{z\in \IC\;:\; |z-z_0|<\varepsilon\}\subseteq [/mm] U$. Daraus folgt aber sogleich, dass auch [mm] $\{z\in \IC\;:\; |z-\overline{z}_0|<\varepsilon\}=\{\overline{z}\in \IC\;:\; |\overline{z}-\overline{z}_0|<\varepsilon\}\subseteq \overline{U}=V$ [/mm] ist, denn

[mm]|\overline{z}-\overline{z}_0|=|\overline{z-z_0}|=|z-z_0| < \varepsilon[/mm]


>  b) Sollte man hier die
> Cauchy-Riemann-Differentialgleichungen verwenden?

Ich würde etwas simpler vorgehen und einfach den Limes

[mm]g'(\overline{z}_0)=\lim_{\overline{z}\rightarrow \overline{z}_0}\frac{g(\overline{z})-g(\overline{z}_0)}{\overline{z}-\overline{z}_0}[/mm]


unter Verwendung der Eigenschaften der Konjugation auf die gewünschte Form zu bringen versuchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]