matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenDiff-GLS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Diff-GLS
Diff-GLS < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff-GLS: Eigenvektoren?
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 28.01.2013
Autor: mwieland

Aufgabe
Bestimmen Sie die allgemeine Lösung des folgenden Differentialgleichungssystems:

[mm] x'=-x-3z+e^{3t} [/mm]
y'=-4x-y+2z
[mm] z'=-2x-6z-e^{3t} [/mm]

Hallo!

ich komme hier irgendwie nicht weiter, hoffe ihr könnt mir helfen...

zu allererst suche ich mir die eigenwerte der Matrix

also [mm] det(A-\lambda*E)=det\pmat{ -1-\lambda & 0 & -3 \\ -4 & -1-\lambda & 2 \\ -2 &0 & -6-\lambda }=-\lambda*(\lambda^{2}+8\lambda+7) [/mm]

dann sind die eigenwerte [mm] \lambda_{1}=0, \lambda_{2}=-1; \lambda_{3}=-7 [/mm]

rechne ich mir nun den eigenvektor zu [mm] \lambda_{1} [/mm] aus komme ich auf ein Gleichungssystem mit einem Freiheitsgrad. nun zu meinem Problem, wie mache ich das bei den DIfferentialgleichungssystemen wenn ich einen freiheitsgrad habe? definiere ich einfach zB [mm] x_{1}=t [/mm] und bestimme die anderen beiden komponenten des vektors in abhängigkeit von t oder wie löst man das bei den diff-GLS?

vielen dank schon mal,

lg markus

        
Bezug
Diff-GLS: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mo 28.01.2013
Autor: MathePower

Hallo mwieland,


> Bestimmen Sie die allgemeine Lösung des folgenden
> Differentialgleichungssystems:
>  
> [mm]x'=-x-3z+e^{3t}[/mm]
>  y'=-4x-y+2z
>  [mm]z'=-2x-6z-e^{3t}[/mm]
>  Hallo!
>  
> ich komme hier irgendwie nicht weiter, hoffe ihr könnt mir
> helfen...
>  
> zu allererst suche ich mir die eigenwerte der Matrix
>  
> also [mm]det(A-\lambda*E)=det\pmat{ -1-\lambda & 0 & -3 \\ -4 & -1-\lambda & 2 \\ -2 &0 & -6-\lambda }=-\lambda*(\lambda^{2}+8\lambda+7)[/mm]
>  
> dann sind die eigenwerte [mm]\lambda_{1}=0, \lambda_{2}=-1; \lambda_{3}=-7[/mm]
>  
> rechne ich mir nun den eigenvektor zu [mm]\lambda_{1}[/mm] aus komme
> ich auf ein Gleichungssystem mit einem Freiheitsgrad. nun
> zu meinem Problem, wie mache ich das bei den
> DIfferentialgleichungssystemen wenn ich einen freiheitsgrad
> habe? definiere ich einfach zB [mm]x_{1}=t[/mm] und bestimme die
> anderen beiden komponenten des vektors in abhängigkeit von


Genau so machst Du das.


> t oder wie löst man das bei den diff-GLS?
>  
> vielen dank schon mal,
>
> lg markus


Gruss
MathePower

Bezug
                
Bezug
Diff-GLS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Mo 28.01.2013
Autor: mwieland


> Hallo mwieland,
>  
>
> > Bestimmen Sie die allgemeine Lösung des folgenden
> > Differentialgleichungssystems:
>  >  
> > [mm]x'=-x-3z+e^{3t}[/mm]
>  >  y'=-4x-y+2z
>  >  [mm]z'=-2x-6z-e^{3t}[/mm]
>  >  Hallo!
>  >  
> > ich komme hier irgendwie nicht weiter, hoffe ihr könnt mir
> > helfen...
>  >  
> > zu allererst suche ich mir die eigenwerte der Matrix
>  >  
> > also [mm]det(A-\lambda*E)=det\pmat{ -1-\lambda & 0 & -3 \\ -4 & -1-\lambda & 2 \\ -2 &0 & -6-\lambda }=-\lambda*(\lambda^{2}+8\lambda+7)[/mm]
>  
> >  

> > dann sind die eigenwerte [mm]\lambda_{1}=0, \lambda_{2}=-1; \lambda_{3}=-7[/mm]
>  
> >  

> > rechne ich mir nun den eigenvektor zu [mm]\lambda_{1}[/mm] aus komme
> > ich auf ein Gleichungssystem mit einem Freiheitsgrad. nun
> > zu meinem Problem, wie mache ich das bei den
> > DIfferentialgleichungssystemen wenn ich einen freiheitsgrad
> > habe? definiere ich einfach zB [mm]x_{1}=t[/mm] und bestimme die
> > anderen beiden komponenten des vektors in abhängigkeit von
>
>
> Genau so machst Du das.
>  

und das setz ich dann einfach in meine homogene lösung ein?

dann steh da zB [mm] y_{hom}=C_{1}*e^{\lambda_{1}t}*t*\vektor{x \\ y \\ z}+ [/mm] ...

oder?

danke und lg

Bezug
                        
Bezug
Diff-GLS: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 28.01.2013
Autor: MathePower

Hallo mwieland,

> > Hallo mwieland,
>  >  
> >
> > > Bestimmen Sie die allgemeine Lösung des folgenden
> > > Differentialgleichungssystems:
>  >  >  
> > > [mm]x'=-x-3z+e^{3t}[/mm]
>  >  >  y'=-4x-y+2z
>  >  >  [mm]z'=-2x-6z-e^{3t}[/mm]
>  >  >  Hallo!
>  >  >  
> > > ich komme hier irgendwie nicht weiter, hoffe ihr könnt mir
> > > helfen...
>  >  >  
> > > zu allererst suche ich mir die eigenwerte der Matrix
>  >  >  
> > > also [mm]det(A-\lambda*E)=det\pmat{ -1-\lambda & 0 & -3 \\ -4 & -1-\lambda & 2 \\ -2 &0 & -6-\lambda }=-\lambda*(\lambda^{2}+8\lambda+7)[/mm]
>  
> >  

> > >  

> > > dann sind die eigenwerte [mm]\lambda_{1}=0, \lambda_{2}=-1; \lambda_{3}=-7[/mm]
>  
> >  

> > >  

> > > rechne ich mir nun den eigenvektor zu [mm]\lambda_{1}[/mm] aus komme
> > > ich auf ein Gleichungssystem mit einem Freiheitsgrad. nun
> > > zu meinem Problem, wie mache ich das bei den
> > > DIfferentialgleichungssystemen wenn ich einen freiheitsgrad
> > > habe? definiere ich einfach zB [mm]x_{1}=t[/mm] und bestimme die
> > > anderen beiden komponenten des vektors in abhängigkeit von
> >
> >
> > Genau so machst Du das.
>  >  
>
> und das setz ich dann einfach in meine homogene lösung
> ein?
>  
> dann steh da zB [mm]y_{hom}=C_{1}*e^{\lambda_{1}t}*t*\vektor{x \\ y \\ z}+[/mm]
> ...
>  


Das steht nur

[mm]y_{hom}=C_{1}*e^{\lambda_{1}t}*\vektor{x \\ y \\ z}+...[/mm]


> oder?
>  
> danke und lg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]