matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieDie Verteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Die Verteilungsfunktion
Die Verteilungsfunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Verteilungsfunktion: Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:55 Di 13.10.2009
Autor: mb588

Aufgabe
Ich habe diese Frage in keinen anderen Forum gestellt.

Hallo. Wor beschäftigen und gerade in der Stochastik mit der Verteilungsfunktion. Wir haben sie wie folgt definiert:
[mm] F:\IR\to\IR [/mm] mit [mm] F(x):=P(]-\infty,x]), x\in\IR [/mm]
Jetzt hab ich etwas in Büchern und im Netz nachgeschaut und und finde da nur diese Definition:
F(x):=P(X<x) wobei X eine reelle zufallsvariable ist und [mm] x\in\IR [/mm]

Jetzt frage ich mich einerseits, wo dort drin der unterschied liegt bzw. warum beide gleich sind. Und im allgemeinen, wie die erste Definition zu versthen ist.

Vielen dank im voraus

        
Bezug
Die Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:30 Mi 14.10.2009
Autor: Al-Chwarizmi


>  Hallo. Wor beschäftigen und gerade in der Stochastik mit
> der Verteilungsfunktion.

Och verdteje dad halbwehs.


> Wir haben sie wie folgt
> definiert:
>  [mm]F:\IR\to\IR[/mm] mit [mm]F(x):=P(]-\infty,x]), x\in\IR[/mm]
>  Jetzt hab
> ich etwas in Büchern und im Netz nachgeschaut und und
> finde da nur diese Definition:
>  F(x):=P(X<x) wobei X eine reelle zufallsvariable ist und
> [mm]x\in\IR[/mm]
>  
> Jetzt frage ich mich einerseits, wo dort drin der
> unterschied liegt bzw. warum beide gleich sind. Und im
> allgemeinen, wie die erste Definition zu versthen ist.


Die beiden Definitionen stehen ungefähr für dasselbe.
Die zweite gefällt mir etwas besser, da da explizit von
einer Zufallsvariablen X die Rede ist. In der ersten
Definition ist dies bestimmt auch gemeint, aber nicht
ausdrücklich gesagt. Hier wird von der Wahrscheinlich-
keit eines Intervalls von Zahlenwerten (für die Zufalls-
variable) gesprochen. Genau genommen müsste man
allerdings  

     [mm] $P(]-\infty,x])$ [/mm]

mit

     [mm] $P(X\le [/mm] x)$

nach der zweiten Definition identifizieren statt mit  $P(X<x)$.
Bei stetigen Wahrscheinlichkeitsverteilungen spielt
diese Unterscheidung allerdings keine Rolle, bei diskreten
Verteilungen aber sehr wohl.

Ich meine aber, dass doch in der Regel nicht $F(x):=P(X<x)$,
sondern [mm] $F(x):=P(X\le [/mm] x)$ als Definition für die Wahrscheinlich-
keitsfunktion verwendet wird !


LG     Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]