matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikDie Räume C[a,b] und L_2[a,b]
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Die Räume C[a,b] und L_2[a,b]
Die Räume C[a,b] und L_2[a,b] < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Räume C[a,b] und L_2[a,b]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 So 18.11.2007
Autor: ThommyM

Ich grübel hier vor einem stochastisch/funktionalanalytischen Problem. Und zwar stelle ich mir die Frage, ob der Raum C[a,b] der auf dem Intervall [a,b] stetigen Funktionen, die zusätzlich (b-a) - periodisch sind, in dem Hilbertraum [mm] L_2[a,b] [/mm] enthalten ist, also dem Raum der messbaren Funktionen auf [a,b], für die das Lebesgue-Integral [mm] \integral_{a}^{b}{|f(x)|^2 dx} [/mm] existiert.

Auf jeden Fall ist es ja so, dass wenn man die konstante Funktion f(x)=1 nimmt, dass diese auf ganz [mm] \IR [/mm] nicht Lebesgue-integrierbar ist und somit ja auch nicht quadratintegrierbar. Aber was ist, wenn man sich auf das Intervall [a,b] beschränkt. Ich suche die ganze Zeit ein Beispiel für eine solche periodische, stetige Funktion, die nicht quadrat-integrierbar ist. Vielleicht kann mir ja jemand helfen?!

        
Bezug
Die Räume C[a,b] und L_2[a,b]: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 So 18.11.2007
Autor: andreas

hi

wenn ich dich recht verstehe, möchtest du wissen, ob $C([a, b]) [mm] \subseteq L_2([a, [/mm] b])$ gilt, wobei $[a, b]$ ein kompaktes invervall ist? dann ist die frage mit ja zu beantworten: stetige funktionen sind lebesgue-messbar und nach einem satz von weierstrass sind stetige funktionen auf kompakten mengen beschränkt, das heißt es gibt ein $M < [mm] \infty$ [/mm] mit $|f(x)| [mm] \leq [/mm] M$ für $x [mm] \in [/mm] [a, b]$. und da das lebesgue-maß von $[a, b]$ endlich ist, ist somit das integral endlich.

mir ist allerdings etwas unklar, was du hier mit periodizität willst - davon merkt man auf diesem intervall nichts?

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]