matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationDie Gamma Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Die Gamma Funktion
Die Gamma Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Gamma Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 So 16.05.2010
Autor: m0ppel

Aufgabe
a)
Zeigen Sie, dass es unendlich viele Funktionen [mm]F_{\lambda}:(0, \infty) \to \IR, \lambda \in \IR[/mm], mit der Eigenschaft
[mm]F_{\lambda} (n+1)=n![/mm], [mm]n \in \IN[/mm], gibt, so dass [mm]\gamma - F_{\lambda}[/mm] differenzierbar ist, [mm]\lambda \in \IR[/mm].

b) Beweisen Sie die Legendre-Verdopplungsformel:
[mm]\gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\bruch{\wurzel{\pi}}{2^{x-1}}*\gamma (x) , x > 0[/mm]

Ich muss leider gestehen, dass ich zu der ersten Teilaufgabe keine Idee hab, wie ich das lösen könnte... Wäre echt lieb, wenn ihr mir ein paar Lösungsansätze geben könntet, damit ich da irgendwie weiter komme.

Zu Aufgabe b hab ich wenigstens schon einen Anfang:
z.z.[mm]\gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\bruch{\wurzel{\pi}}{2^{x-1}}*\gamma(x)[/mm]

hier hab ich die Definition der Gamma Funktion genutzt:
[mm]\gamma (x)= \integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}[/mm]
Setz man dies ein kommt:
[mm] \gamma (\bruch{x}{2})*\gamma (\bruch{x+1}{2})=\integral_{0}^{\infty}{t^{\bruch{x}{2}-1}*exp(-t) dx}*\integral_{0}^{\infty}{t^{\bruch{x+1}{2}-1}*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{\bruch{x}{2}-1}*exp(-t)*t^{\bruch{x+1}{2}-1}*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{\bruch{2x-3}{2}}*exp(-t)*exp(-t) dx} [/mm]
[mm] =\integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}*\integral_{0}^{\infty}{t^{\bruch{1}{2}}*exp(-t) dx} [/mm]
der erste Faktor ist ja dann genau:
[mm]\gamma (x)= \integral_{0}^{\infty}{t^{x-1}*exp(-t) dx}[/mm]
Also ist nur noch zu zeigen, dass [mm] \integral_{0}^{\infty}{t^{\bruch{1}{2}}*exp(-t) dx}=\bruch{\wurzel{\pi}}{2^{x-1}} [/mm]

und genau hier komme ich nicht weiter...
wäre lieb, wenn mir einer helfen kann!
Danke schon mal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Die Gamma Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mo 17.05.2010
Autor: Lyrn

Hallo!
Ich mache gerade die selbe Aufgabe.

Guck mal hier: https://matheraum.de/read?i=683618

Vielleicht hilft es ja :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]