matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungDie Ableitung an der stelle x0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Die Ableitung an der stelle x0
Die Ableitung an der stelle x0 < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Die Ableitung an der stelle x0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Do 12.02.2009
Autor: B3nny

Aufgabe

Bestimmen sie die Steigung der Tangente t und der Normalen n des Schaubildes der Funktion f im Berührpunkt B. Geben sie die Gleichung von t und n an.
f(x)= (1/9)x³- x²; B(3/-6)

Hey

kann mir bitte jemand mit der aufgabe helfen. Ich hab die als Hausaufgabe und weiß überhaupt nicht wie ich anfangen soll!!

P.S. des 1/9 soll ein bruch sein weil ich check des mit der schreibweise von hier noch nich so ganz!!:)

also schon mal danke im vorraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Die Ableitung an der stelle x0: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:13 Do 12.02.2009
Autor: Loddar

Hallo B3nny,

[willkommenmr] !!


Berechne zunächst die Ableitung $f'(x)_$ und bestimme anschließend den entsprechenden Wert an der Stelle [mm] $x_0 [/mm] \ = \ 3$ .

Damit kennst Du nun von der Tangente sowohl die Steigung als auch einen Punkt.

Die Steigung der Normale [mm] $m_n$ [/mm] ergibt sich aus der Tangentensteigung $m_$ über:
[mm] $$m_n [/mm] \ = \ - [mm] \bruch{1}{m_t}$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]