matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieDichtheit der rationalen Zahle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Dichtheit der rationalen Zahle
Dichtheit der rationalen Zahle < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtheit der rationalen Zahle: Hilfe bei Lösung der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 23.06.2009
Autor: nala24

Aufgabe
(Dichtheit der rationalen Zahlen) a) Begründen Sie: Zwischen zwei Brüchen liegt
stets ein weiterer Bruch. b) Es gibt keinen kleinsten positiven Bruch.(Dichtheit der rationalen Zahlen) a) Begründen Sie: Zwischen zwei Brüchen liegt
stets ein weiterer Bruch. b) Es gibt keinen kleinsten positiven Bruch.

Auch hier wäre ich um jeden Lösungsansatz und Hilfe sehr dankbar.


Viele liebe Grüße

Jessica



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de/forum/Äquivalenzrelationen]

        
Bezug
Dichtheit der rationalen Zahle: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Di 23.06.2009
Autor: Zwerglein

Hi, nala,

> (Dichtheit der rationalen Zahlen) a) Begründen Sie:
> Zwischen zwei Brüchen liegt
>  stets ein weiterer Bruch. b) Es gibt keinen kleinsten
> positiven Bruch.
>  Auch hier wäre ich um jeden Lösungsansatz und Hilfe sehr
> dankbar.

Bei a) nimmst Du einfach zwei beliebige (aber natürlich verschiedene) Brüche (allgemeiner Ansatz mit [mm] \bruch{a}{b} [/mm] etc.), addierst sie und dividierst durch 2. Der entstehende Bruch liegt dann sogar in der Mitte zwischen den beiden ursprünglichen.
Bei b) nimmst Du an, Du hättest "den" kleinsten positiven Bruch [mm] \bruch{a}{b} [/mm] gefunden. Dann halbierst Du ihn und beweist, dass der neue gefundene Bruch positiv und kleiner ist als der ursprüngliche.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]